ﻻ يوجد ملخص باللغة العربية
Given a group cocycle on a finitely aligned left cancellative small category (LCSC) we investigate the associated skew product category and its Cuntz-Krieger algebra, which we describe as the crossed product of the Cuntz-Krieger algebra of the original category by an induced coaction of the group. We use our results to study Cuntz-Krieger algebras arising from free actions of groups on finitely aligned LCSCs, and to construct coactions of groups on Exel-Pardo algebras. Finally we discuss the universal group of a small category and connectedness of skew product categories.
We consider Toeplitz and Cuntz-Krieger $C^*$-algebras associated with finitely aligned left cancellative small categories. We pay special attention to the case where such a category arises as the Zappa-Szep product of a category and a group linked by
Motivated by the theory of Cuntz-Krieger algebras we define and study $ C^ast $-algebras associated to directed quantum graphs. For classical graphs the $ C^ast $-algebras obtained this way can be viewed as free analogues of Cuntz-Krieger algebras, a
In this article, we present a new method to study relative Cuntz-Krieger algebras for higher-rank graphs. We only work with edges rather than paths of arbitrary degrees. We then use this method to simplify the existing results about relative Cuntz-Kr
Strengthening classical results by Bratteli and Kishimoto, we prove that two subshifts of finite type are shift equivalent in the sense of Williams if and only if their Cuntz-Krieger algebras are equivariantly stably isomorphic. This provides an equi
We construct a covariant functor from the topological torus bundles to the so-called Cuntz-Krieger algebras; the functor maps homeomorphic bundles into the stably isomorphic Cuntz-Krieger algebras. It is shown, that the K-theory of the Cuntz-Krieger