ﻻ يوجد ملخص باللغة العربية
(Abridged) The quiet M2.5 star GJ 436 hosts a warm Neptune that displays an extended atmosphere that dwarfs its own host star. Predictions of atmospheric escape in such planets state that H atoms escape from the upper atmosphere in a collisional regime and that the flow can drag heavier atoms to the upper atmosphere. It is unclear, however, what astrophysical mechanisms drive the process. Our objective is to leverage the extensive coverage of HST/COS observations of the far-ultraviolet (FUV) spectrum of GJ 436 to search for signals of metallic ions in the upper atmosphere of GJ 436 b. We analyzed flux time-series of species present in the FUV spectrum of GJ 436, as well as the Lyman-$alpha$ line. GJ 436 displays FUV flaring events with a rate of $sim$10 d$^{-1}$. There is evidence for a possibly long-lived active region or longitude that modulates the FUV metallic lines of the star with amplitudes up to 20%. Despite the strong geocoronal contamination in the COS spectra, we detected in-transit excess absorption signals of $sim$50% and $sim$30% in the blue and red wings, respectively, of the Lyman-$alpha$ line. We rule out a wide range of excess absorption levels in the metallic lines of the star during the transit. The large atmospheric loss of GJ 436 b observed in Lyman-$alpha$ transmission spectra is stable over the timescale of a few years, and the red wing signal supports the presence of a variable hydrogen absorption source besides the stable exosphere. The previously claimed in-transit absorption in the Si III line is likely an artifact resulting from the stellar magnetic cycle. The non-detection of metallic ions in absorption could indicate that the escape is not hydrodynamic or that the atmospheric mixing is not efficient in dragging metals high enough for sublimation to produce a detectable escape rate of ions to the exosphere.
The detection of small planets orbiting nearby stars is an important step towards the identification of Earth twins. In previous work using the Spitzer Space Telescope, we found evidence to support at least one sub-Earth-sized exoplanet orbiting the
(Abridged) Short-period gas giant exoplanets are susceptible to intense atmospheric escape due to their large scale heights and strong high-energy irradiation. This process is thought to occur ubiquitously, but to date we have only detected direct ev
We present a comprehensive analysis of the 0.3--5,$mu$m transit spectrum for the inflated hot Jupiter HAT-P-41b. The planet was observed in transit with Hubble STIS and WFC3 as part of the Hubble Panchromatic Comparative Exoplanet Treasury (PanCET) p
Context. GJ 1148 is an M-dwarf star hosting a planetary system composed of two Saturn-mass planets in eccentric orbits with periods of 41.38 and 532.02 days. Aims. We reanalyze the orbital configuration and dynamics of the GJ 1148 multi-planetary sys
The late-type dwarf GJ 436 is known to host a transiting Neptune-mass planet in a 2.6-day orbit. We present results of our interferometric measurements to directly determine the stellar diameter ($R_{star} = 0.455 pm 0.018 R_{odot}$) and effective te