ﻻ يوجد ملخص باللغة العربية
Atypically large fluctuations in macroscopic non-equilibrium systems continue to attract interest. Their probability can often be determined by the optimal fluctuation method (OFM). The OFM brings about a conditional variational problem, the solution of which describes the optimal path of the system which dominates the contribution of different stochastic paths to the desired statistics. The OFM proved efficient in evaluating the probabilities of rare events in a host of systems. However, theoretically predicted optimal paths were observed in stochastic simulations only in diffusive lattice gases, where the predicted optimal density patterns are either stationary, or travel with constant speed. Here we focus on the one-point height distribution of the paradigmatic Kardar-Parisi-Zhang interface. Here the optimal paths, corresponding to the distribution tails at short times, are intrinsically non-stationary and can be predicted analytically. Using the mapping to the directed polymer in a random potential at high temperature, we obtain snapshots of the optimal paths in Monte-Carlo simulations which probe the tails with an importance sampling algorithm. For each tail we observe a very narrow tube of height profiles around a single optimal path which agrees with the analytical prediction. The agreement holds even at long times, supporting earlier assertions of the validity of the OFM in the tails well beyond the weak-noise limit.
Consider the short-time probability distribution $mathcal{P}(H,t)$ of the one-point interface height difference $h(x=0,tau=t)-h(x=0,tau=0)=H$ of the stationary interface $h(x,tau)$ described by the Kardar-Parisi-Zhang equation. It was previously show
We study the dynamics of vortices in a two-dimensional, non-equilibrium system, described by the compact Kardar-Parisi-Zhang equation, after a sudden quench across the critical region. Our exact numerical solution of the phase-ordering kinetics shows
Surface growth governed by the Kardar-Parisi-Zhang (KPZ) equation in dimensions higher than two undergoes a roughening transition from smooth to rough phases with increasing the nonlinearity. It is also known that the KPZ equation can be mapped onto
Circular KPZ interfaces spreading radially in the plane have GUE Tracy-Widom (TW) height distribution (HD) and Airy$_2$ spatial covariance, but what are their statistics if they evolve on the surface of a different background space, such as a bowl, a
We study the scaling regimes for the Kardar-Parisi-Zhang equation with noise correlator R(q) ~ (1 + w q^{-2 rho}) in Fourier space, as a function of rho and the spatial dimension d. By means of a stochastic Cole-Hopf transformation, the critical and