ﻻ يوجد ملخص باللغة العربية
We study the performance of self-consistent mean-field and beyond-mean-field approximations in shell-model valence spaces. In particular, Hartree-Fock-Bogolyubov, particle-number variation after projection and projected generator coordinate methods are applied to obtain ground-state and excitation energies for even-even and odd-even Calcium isotopes in the pf-shell. The standard (and non-trivial) KB3G nuclear effective interaction has been used. The comparison with the exact solutions -- provided by the full diagonalization of the Hamiltonian -- shows an outstanding agreement when particle-number and angular-momentum restorations are performed and both quadrupole and neutron-neutron pairing degrees of freedom are explicitly explored as collective coordinates.
A systematic shell model description of the experimental Gamow-Teller transition strength distributions in $^{42}$Ti, $^{46}$Cr, $^{50}$Fe and $^{54}$Ni is presented. These transitions have been recently measured via $beta$ decay of these $T_z$=-1 nu
We report in this paper a study in terms of the nuclear shell model about the location of the calcium isotopes drip line. The starting point is considering the realistic two-body potential derived by Entem and Machleidt within chiral perturbation the
Based on the realistic nuclear force of the high-precision CD-Bonn potential, we have performed comprehensive calculations for neutron-rich calcium isotopes using the Gamow shell model (GSM) which includes resonance and continuum. The realistic GSM c
The lightest Xenon isotopes are studied in the framework of the Interacting Shell Model (ISM). The valence space comprises all the orbits lying between the magic closures N=Z=50 and N=Z=82. The calculations produce collective deformed structures of t
We present the code HF-SHELL for solving the self-consistent mean-field equations for configuration-interaction shell model Hamiltonians in the proton-neutron formalism. The code can calculate both ground-state and finite-temperature properties in th