ﻻ يوجد ملخص باللغة العربية
We introduce and experimentally demonstrate a method, where the two intrinsic time scales of a molecule, the slow nuclear motion and the fast electronic motion, are simultaneously measured in a photo-electron photo-ion coincidence experiment. In our experiment, elliptically polarized, 750~nm, 4.5~fs laser pulses were focused to an intensity of $9times10^{14}mathrm{W/cm}^2$ onto H$_2$. Using coincidence imaging, we directly observe the nuclear wavepacket evolving on the ssg{} state of H$_2^+$ during its first roundtrip with attosecond temporal and picometer spatial resolution. The demonstrated method should enable insight into the first few femtoseconds of the vibronic dynamics of ionization-induced unimolecular reactions of larger molecules.
A nonlinear interferometry scheme is described theoretically to induce and resolve electron wave- function beating on time scales shorter than the optical cycle of the time-delayed pump and probe pulses. By employing two moderately intense few-cycle
We compare femtosecond pump-probe experiments in Ni and micromagnetic modelling based on the Landau-Lifshitz-Bloch equation coupled to a two-temperature model, revealing a predominant thermal ultrafast demagnetization mechanism. We show that both spi
Coherent light pulses of few to hundreds of femtoseconds (fs) duration have prolifically served the field of ultrafast phenomena. While fs pulses address mainly dynamics of nuclear motion in molecules or lattices in the gas, liquid or condensed matte
In strong field ionization, the pump pulse not only photoionizes the molecule, but also drives efficient population exchanges between its ionic ground and excited states.In this study, we investigated the population dynamics accompanying strong field
We report on the unambiguous observation of the sub-cycle ionization bursts in sequential strong-field double ionization of H$_2$ and their disentanglement in molecular frame photoelectron angular distributions. This observation was made possible by