ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental Transverse Vibrations of the Active Region Solar Corona

57   0   0.0 ( 0 )
 نشر من قبل Manuel Luna
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Some high-resolution observations have revealed that the active-region solar corona is filled with myriads of thin strands even in apparently uniform regions with no resolved loops. This fine structure can host collective oscillations involving a large portion of the corona due to the coupling of the motions of the neighbouring strands. We study these vibrations and the possible observational effects. Here we theoretically investigate the collective oscillations inherent to the fine structure of the corona. We have called them fundamental vibrations because they cannot exist in a uniform medium. We use the T-matrix technique to find the normal modes of random arrangements of parallel strands. We consider an increasing number of tubes to understand the vibrations of a huge number of tubes of a large portion of the corona. We additionally generate synthetic time-distance Doppler and line broadening diagrams of the vibrations of a coronal region to compare with observations. We have found that the fundamental vibrations are in the form of clusters of tubes where not all the tubes participate in the collective mode. The periods are distributed over a wide band of values. The width of the band increases with the number of strands but rapidly reaches an approximately constant value. The frequency band associated with the fine structure of the corona depends on the minimum separation between strands. We have found that the coupling between the strands is of large extent. The synthetic Dopplergrams and line-broadening maps show signatures of collective vibrations, not present in the case of purely random individual kink vibrations. We conclude that the fundamental vibrations of the corona can contribute to the energy budget of the corona and they may have an observational signature.



قيم البحث

اقرأ أيضاً

199 - Marc L. DeRosa 2009
Nonlinear force-free field (NLFFF) models are thought to be viable tools for investigating the structure, dynamics and evolution of the coronae of solar active regions. In a series of NLFFF modeling studies, we have found that NLFFF models are succes sful in application to analytic test cases, and relatively successful when applied to numerically constructed Sun-like test cases, but they are less successful in application to real solar data. Different NLFFF models have been found to have markedly different field line configurations and to provide widely varying estimates of the magnetic free energy in the coronal volume, when applied to solar data. NLFFF models require consistent, force-free vector magnetic boundary data. However, vector magnetogram observations sampling the photosphere, which is dynamic and contains significant Lorentz and buoyancy forces, do not satisfy this requirement, thus creating several major problems for force-free coronal modeling efforts. In this article, we discuss NLFFF modeling of NOAA Active Region 10953 using Hinode/SOT-SP, Hinode/XRT, STEREO/SECCHI-EUVI, and SOHO/MDI observations, and in the process illustrate the three such issues we judge to be critical to the success of NLFFF modeling: (1) vector magnetic field data covering larger areas are needed so that more electric currents associated with the full active regions of interest are measured, (2) the modeling algorithms need a way to accommodate the various uncertainties in the boundary data, and (3) a more realistic physical model is needed to approximate the photosphere-to-corona interface in order to better transform the forced photospheric magnetograms into adequate approximations of nearly force-free fields at the base of the corona. We make recommendations for future modeling efforts to overcome these as yet unsolved problems.
The relationships among coronal loop structures at different temperatures is not settled. Previous studies have suggested that coronal loops in the core of an active region are not seen cooling through lower temperatures and therefore are steadily he ated. If loops were cooling, the transition region would be an ideal temperature regime to look for a signature of their evolution. The Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode provides monochromatic images of the solar transition region and corona at an unprecedented cadence and spatial resolution, making it an ideal instrument to shed light on this issue. Analysis of observations of active region 10978 taken in 2007 December 8 -- 19 indicates that there are two dominant loop populations in the active region: core multi-temperature loops that undergo a continuous process of heating and cooling in the full observed temperature range 0.4-2.5 MK and even higher as shown by the X-Ray Telescope (XRT); and peripheral loops which evolve mostly in the temperature range 0.4-1.3 MK. Loops at transition region temperatures can reach heights of 150 Mm in the corona above the limb and develop downflows with velocities in the range of 39-105 km/s.
Current analytical and numerical modelling suggest the existence of ubiquitous thin current sheets in the corona that could explain the observed heating requirements. On the other hand, new high resolution observations of the corona indicate that its magnetic field may tend to organise itself in fine strand-like structures of few hundred kilometres widths. The link between small structure in models and the observed widths of strand-like structure several orders of magnitude larger is still not clear. A popular theoretical scenario is the nanoflare model, in which each strand is the product of an ensemble of heating events. Here, we suggest an alternative mechanism for strand generation. Through forward modelling of 3D MHD simulations we show that small amplitude transverse MHD waves can lead in a few periods time to strand-like structure in loops in EUV intensity images. Our model is based on previous numerical work showing that transverse MHD oscillations can lead to Kelvin-Helmholtz instabilities that deform the cross-sectional area of loops. While previous work has focused on large amplitude oscillations, here we show that the instability can occur even for low wave amplitudes for long and thin loops, matching those presently observed in the corona. We show that the vortices generated from the instability are velocity sheared regions with enhanced emissivity hosting current sheets. Strands result as a complex combination of the vortices and the line-of-sight angle, last for timescales of a period and can be observed for spatial resolutions of a tenth of loop radius.
Transverse MHD waves permeate the solar atmosphere and are a candidate for coronal heating. However, the origin of these waves is still unclear. In this work, we analyse coordinated observations from textit{Hinode}/SOT and textit{IRIS} of a prominenc e/coronal rain loop-like structure at the limb of the Sun. Cool and dense downflows and upflows are observed along the structure. A collision between a downward and an upward flow with an estimated energy flux of $10^{7}-10^{8}$~erg~cm$^{-2}$~s$^{-1}$ is observed to generate oscillatory transverse perturbations of the strands with an estimated $approx40~$km~s$^{-1}$ total amplitude, and a short-lived brightening event with the plasma temperature increasing to at least $10^{5}~$K. We interpret this response as sausage and kink transverse MHD waves based on 2D MHD simulations of plasma flow collision. The lengths, density and velocity differences between the colliding clumps and the strength of the magnetic field are major parameters defining the response to the collision. The presence of asymmetry between the clumps (angle of impact surface and/or offset of flowing axis) is crucial to generate a kink mode. Using the observed values we successfully reproduce the observed transverse perturbations and brightening, and show adiabatic heating to coronal temperatures. The numerical modelling indicates that the plasma $beta$ in this loop-like structure is confined between $0.09$ and $0.36$. These results suggest that such collisions from counter-streaming flows can be a source of in-situ transverse MHD waves, and that for cool and dense prominence conditions such waves could have significant amplitudes.
Both coronal holes and active regions are source regions of the solar wind. The distribution of these coronal structures across both space and time is well known, but it is unclear how much each source contributes to the solar wind. In this study we use photospheric magnetic field maps observed over the past four solar cycles to estimate what fraction of magnetic open solar flux is rooted in active regions, a proxy for the fraction of all solar wind originating in active regions. We find that the fractional contribution of active regions to the solar wind varies between 30% to 80% at any one time during solar maximum and is negligible at solar minimum, showing a strong correlation with sunspot number. While active regions are typically confined to latitudes $pm$30$^{circ}$ in the corona, the solar wind they produce can reach latitudes up to $pm$60$^{circ}$. Their fractional contribution to the solar wind also correlates with coronal mass ejection rate, and is highly variable, changing by $pm$20% on monthly timescales within individual solar maxima. We speculate that these variations could be driven by coronal mass ejections causing reconfigurations of the coronal magnetic field on sub-monthly timescales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا