ﻻ يوجد ملخص باللغة العربية
We optimize the recording medium for heat-assisted magnetic recording by using a high/low $T_{mathrm{c}}$ bilayer structure to reduce AC and DC noise. Compared to a former work, small Gilbert damping $alpha=0.02$ is considered for the FePt like hard magnetic material. Atomistic simulations are performed for a cylindrical recording grain with diameter $d=5,$nm and height $h=8,$nm. Different soft magnetic material compositions are tested and the amount of hard and soft magnetic material is optimized. The results show that for a soft magnetic material with $alpha_{mathrm{SM}}=0.1$ and $J_{ij,mathrm{SM}}=7.72times 10^{-21},$J/link a composition with $50%$ hard and $50%$ soft magnetic material leads to the best results. Additionally, we analyse how much the areal density can be improved by using the optimized bilayer structure compared to the pure hard magnetic recording material. It turns out that the optimized bilayer design allows an areal density that is $1,$Tb/in$^2$ higher than that of the pure hard magnetic material while obtaining the same SNR.
In magnetic recording the signal-to-noise ratio (SNR) is a good indicator for the quality of written bits. However, a priori it is not clear which parameters have the strongest influence on the SNR. In this work, we investigate the role of the Gilber
The presence of magnetic noise in magnetoresistive-based magnetic sensors degrades their detection limit at low frequencies. In this paper, different ways of stabilizing the magnetic sensing layer to suppress magnetic noise are investigated by applyi
The reduction of the transition curvature of written bits in heat-assisted magnetic recording (HAMR) is expected to play an important role for the future areal density increase of hard disk drives. Recently a write head design with flipped write and
Enhancing light absorption in the recording media layer can improve the energy efficiency and prolong the device lifetime in heat assisted magnetic recording (HAMR). In this work, we report the design and implementation of a resonant nanocavity struc
In this paper we apply an extended Landau-Lifschitz equation, as introduced by Bav{n}as et al. for the simulation of heat-assisted magnetic recording. This equation has similarities with the Landau-Lifshitz-Bloch equation. The Bav{n}as equation is su