ترغب بنشر مسار تعليمي؟ اضغط هنا

The Nonbinary Fraction: Looking Towards the Future of Gender Equity in Astronomy

110   0   0.0 ( 0 )
 نشر من قبل Erin Maier
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gender equity is one of the biggest issues facing the field of astrophysics, and there is broad interest in addressing gender disparities within astronomy. Many studies of these topics have been performed by professional astronomers who are relatively unfamiliar with research in fields such as gender studies and sociology. As a result, they adopt a normative view of gender as a binary choice of male or female, leaving astronomers whose genders do not fit within that model out of such research entirely. Reductive frameworks of gender and an overemphasis on quantification as an indicator of gendered phenomena are harmful to people of marginalized genders, especially those who live at the intersections of multiple axes of marginalization such as race, disability, and socioeconomic status. In order for the astronomy community to best serve its marginalized members as we move into the next decade, a new paradigm must be developed. This paper aims to address the future of gender equity in astronomy by recommending better survey practices and institutional policies based on a more complex approach to gender.



قيم البحث

اقرأ أيضاً

59 - Daniel A. Perley 2019
I analyze the postdoctoral career tracks of a nearly-complete sample of astronomers from 28 United States graduate astronomy and astrophysics programs spanning 13 graduating years (N=1063). A majority of both men and women (65% and 66%, respectively) find long-term employment in astronomy or closely-related academic disciplines. No significant difference is observed in the rates at which men and women are hired into these jobs following their PhDs, or in the rates at which they leave the field. Applying a two-outcome survival analysis model to the entire data set, the relative academic hiring probability ratio for women vs. men at a common year post-PhD is H_(F/M) = 1.08 (+0.20, -0.17; 95% CI); the relative leaving probability ratio is L_(F/M) = 1.03 (+0.31, -0.24). These are both consistent with equal outcomes for both genders (H_(F/M) = L_(F/M) = 1) and rule out more than minor gender differences in hiring or in the decision to abandon an academic career. They suggest that despite discrimination and adversity, women scientists are successful at managing the transition between PhD, postdoctoral, and faculty/staff positions.
Astronomy is entering a new era of discovery, coincident with the establishment of new facilities for observation and simulation that will routinely generate petabytes of data. While an increasing reliance on automated data analysis is anticipated, a critical role will remain for visualization-based knowledge discovery. We have investigated scientific visualization applications in astronomy through an examination of the literature published during the last two decades. We identify the two most active fields for progress - visualization of large-N particle data and spectral data cubes - discuss open areas of research, and introduce a mapping between astronomical sources of data and data representations used in general purpose visualization tools. We discuss contributions using high performance computing architectures (e.g: distributed processing and GPUs), collaborative astronomy visualization, the use of workflow systems to store metadata about visualization parameters, and the use of advanced interaction devices. We examine a number of issues that may be limiting the spread of scientific visualization research in astronomy and identify six grand challenges for scientific visualization research in the Petascale Astronomy Era.
The annual meeting of the European Astronomical Society took place in Lyon, France, in 2019, but in 2020 it was held online only due the COVID-19 pandemic. The carbon footprint of the virtual meeting was roughly 3,000 times smaller than the face-to-f ace one, providing encouragement for more ecologically minded conferencing.
The number of small satellites has grown dramatically in the past decade from tens of satellites per year in the mid-2010s to a projection of tens of thousands in orbit by the mid-2020s. This presents both problems and opportunities for observational astronomy. Small satellites offer complementary cost-effective capabilities to both ground-based astronomy and larger space missions. Compared to ground-based astronomy, these advantages are not just in the accessibility of wavelength ranges where the Earths atmosphere is opaque, but also in stable, high precision photometry, long-term monitoring and improved areal coverage. Astronomy has a long history of new observational parameter spaces leading to major discoveries. Here we discuss the potential for small satellites to explore new parameter spaces in astrophysics, drawing on examples from current and proposed missions, and spanning a wide range of science goals from binary stars, exoplanets and solar system science to the early Universe and fundamental physics.
On May 27th 2010, the Italian astronomical community learned with concern that the National Institute for Astrophysics (INAF) was going to be suppressed, and that its employees were going to be transferred to the National Research Council (CNR). It w as not clear if this applied to all employees (i.e. also to researchers hired on short-term contracts), and how this was going to happen in practice. In this letter, we give a brief historical overview of INAF and present a short chronicle of the few eventful days that followed. Starting from this example, we then comment on the current situation and prospects of astronomical research in Italy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا