ﻻ يوجد ملخص باللغة العربية
The anharmonic soft modes studied in recent numerical work in the glass phase of simple liquids have an unstable core, stabilized by the positive restoring forces of the surrounding elastic medium. The present paper formulates an unstable core version of the phenomenological soft potential model for the low temperature anomalies of glasses, relates a new numerical finding on low-barrier relaxations to old soft potential model results, and discusses experimental evidence for an unstable core of the boson peak modes.
The strain field surrounding the center of low frequency vibrational modes is analyzed for numerically created binary glasses with a 1/r^10 repulsive interatomic potential. Outside the unstable inner core of five to twenty atoms, one finds a mixture
We investigate the properties of local minima of a recently introduced spin glass model of soft spins subjected to an anharmonic quartic local potential which serves as a model of low temperature molecular or soft glasses. We track the long time grad
Glasses possess more low-frequency vibrational modes than predicted by Debye theory. These excess modes are crucial for the understanding the low temperature thermal and mechanical properties of glasses, which differ from those of crystalline solids.
We study the energy minima of the fully-connected $m$-components vector spin glass model at zero temperature in an external magnetic field for $mge 3$. The model has a zero temperature transition from a paramagnetic phase at high field to a spin glas
Tunnelling Two-Level Systems (TLS) dominate the physics of glasses at low temperatures. Yet TLS are extremely rare and it is extremely difficult to directly observe them $it{in , silico}$. It is thus crucial to develop simple structural predictors th