ﻻ يوجد ملخص باللغة العربية
This paper proposed a novel approach for the detection and reconstruction of dysarthric speech. The encoder-decoder model factorizes speech into a low-dimensional latent space and encoding of the input text. We showed that the latent space conveys interpretable characteristics of dysarthria, such as intelligibility and fluency of speech. MUSHRA perceptual test demonstrated that the adaptation of the latent space let the model generate speech of improved fluency. The multi-task supervised approach for predicting both the probability of dysarthric speech and the mel-spectrogram helps improve the detection of dysarthria with higher accuracy. This is thanks to a low-dimensional latent space of the auto-encoder as opposed to directly predicting dysarthria from a highly dimensional mel-spectrogram.
Probabilistic Latent Variable Models (LVMs) provide an alternative to self-supervised learning approaches for linguistic representation learning from speech. LVMs admit an intuitive probabilistic interpretation where the latent structure shapes the i
Modelling the process that a listener actuates in deriving the words intended by a speaker requires setting a hypothesis on how lexical items are stored in memory. This work aims at developing a system that imitates humans when identifying words in r
Recently, end-to-end multi-speaker text-to-speech (TTS) systems gain success in the situation where a lot of high-quality speech plus their corresponding transcriptions are available. However, laborious paired data collection processes prevent many i
Recognizing code-switched speech is challenging for Automatic Speech Recognition (ASR) for a variety of reasons, including the lack of code-switched training data. Recently, we showed that monolingual ASR systems fine-tuned on code-switched data dete
Recently, there has been significant progress made in Automatic Speech Recognition (ASR) of code-switched speech, leading to gains in accuracy on code-switched datasets in many language pairs. Code-switched speech co-occurs with monolingual speech in