ترغب بنشر مسار تعليمي؟ اضغط هنا

On Adversarial Removal of Hypothesis-only Bias in Natural Language Inference

132   0   0.0 ( 0 )
 نشر من قبل Adam Poliak
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Popular Natural Language Inference (NLI) datasets have been shown to be tainted by hypothesis-only biases. Adversarial learning may help models ignore sensitive biases and spurious correlations in data. We evaluate whether adversarial learning can be used in NLI to encourage models to learn representations free of hypothesis-only biases. Our analyses indicate that the representations learned via adversarial learning may be less biased, with only small drops in NLI accuracy.

قيم البحث

اقرأ أيضاً

We propose a hypothesis only baseline for diagnosing Natural Language Inference (NLI). Especially when an NLI dataset assumes inference is occurring based purely on the relationship between a context and a hypothesis, it follows that assessing entail ment relations while ignoring the provided context is a degenerate solution. Yet, through experiments on ten distinct NLI datasets, we find that this approach, which we refer to as a hypothesis-only model, is able to significantly outperform a majority class baseline across a number of NLI datasets. Our analysis suggests that statistical irregularities may allow a model to perform NLI in some datasets beyond what should be achievable without access to the context.
67 - He He , Sheng Zha , Haohan Wang 2019
Statistical natural language inference (NLI) models are susceptible to learning dataset bias: superficial cues that happen to associate with the label on a particular dataset, but are not useful in general, e.g., negation words indicate contradiction . As exposed by several recent challenge datasets, these models perform poorly when such association is absent, e.g., predicting that I love dogs contradicts I dont love cats. Our goal is to design learning algorithms that guard against known dataset bias. We formalize the concept of dataset bias under the framework of distribution shift and present a simple debiasing algorithm based on residual fitting, which we call DRiFt. We first learn a biased model that only uses features that are known to relate to dataset bias. Then, we train a debiased model that fits to the residual of the biased model, focusing on examples that cannot be predicted well by biased features only. We use DRiFt to train three high-performing NLI models on two benchmark datasets, SNLI and MNLI. Our debiased models achieve significant gains over baseline models on two challenge test sets, while maintaining reasonable performance on the original test sets.
We introduce Uncertain Natural Language Inference (UNLI), a refinement of Natural Language Inference (NLI) that shifts away from categorical labels, targeting instead the direct prediction of subjective probability assessments. We demonstrate the fea sibility of collecting annotations for UNLI by relabeling a portion of the SNLI dataset under a probabilistic scale, where items even with the same categorical label differ in how likely people judge them to be true given a premise. We describe a direct scalar regression modeling approach, and find that existing categorically labeled NLI data can be used in pre-training. Our best models approach human performance, demonstrating models may be capable of more subtle inferences than the categorical bin assignment employed in current NLI tasks.
State-of-the-art attacks on NLP models lack a shared definition of a what constitutes a successful attack. We distill ideas from past work into a unified framework: a successful natural language adversarial example is a perturbation that fools the mo del and follows some linguistic constraints. We then analyze the outputs of two state-of-the-art synonym substitution attacks. We find that their perturbations often do not preserve semantics, and 38% introduce grammatical errors. Human surveys reveal that to successfully preserve semantics, we need to significantly increase the minimum cosine similarities between the embeddings of swapped words and between the sentence encodings of original and perturbed sentences.With constraints adjusted to better preserve semantics and grammaticality, the attack success rate drops by over 70 percentage points.
We study the problem of adversarial language games, in which multiple agents with conflicting goals compete with each other via natural language interactions. While adversarial language games are ubiquitous in human activities, little attention has b een devoted to this field in natural language processing. In this work, we propose a challenging adversarial language game called Adversarial Taboo as an example, in which an attacker and a defender compete around a target word. The attacker is tasked with inducing the defender to utter the target word invisible to the defender, while the defender is tasked with detecting the target word before being induced by the attacker. In Adversarial Taboo, a successful attacker must hide its intention and subtly induce the defender, while a competitive defender must be cautious with its utterances and infer the intention of the attacker. Such language abilities can facilitate many important downstream NLP tasks. To instantiate the game, we create a game environment and a competition platform. Comprehensive experiments and empirical studies on several baseline attack and defense strategies show promising and interesting results. Based on the analysis on the game and experiments, we discuss multiple promising directions for future research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا