ترغب بنشر مسار تعليمي؟ اضغط هنا

Bootstrapping line defects in $mathcal{N}=2$ theories

123   0   0.0 ( 0 )
 نشر من قبل Aleix Gimenez-Grau
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study half-BPS line defects in $mathcal{N}=2$ superconformal theories using the bootstrap approach. We concentrate on local excitations constrained to the defect, which means the system is a $1d$ defect CFT with $mathfrak{osp}(4^*|2)$ symmetry. In order to study correlation functions we construct a suitable superspace, and then use the Casimir approach to calculate a collection of new superconformal blocks. Special emphasis is given to the displacement operator, which controls deformations orthogonal to the defect and is always present in a defect CFT. After setting up the crossing equations we proceed with a numerical and analytical bootstrap analysis. We obtain numerical bounds on the CFT data and compare them to known solutions. We also present an analytic perturbative solution to the crossing equations, and argue that this solution captures line defects in $mathcal{N}=2$ gauge theories at strong coupling.



قيم البحث

اقرأ أيضاً

We study the conformal data of a generic superconformal half-BPS line defect in a four-dimensional $mathcal{N} = 2$ theory. We prove a theory independent relation between the one-point function of the stress tensor in the presence of the line defect and the two-point function of the displacement operator. When the defect is interpreted as a heavy charged particle in a gauge theory, the result relates the energy emitted through Bremsstrahlung with the coupling of the stress tensor to the particle at rest.
We study 3d $mathcal{N}=2$ supersymmetric gauge theories on closed oriented Seifert manifold---circle bundles over an orbifold Riemann surface---, with a gauge group G given by a product of simply-connected and/or unitary Lie groups. Our main result is an exact formula for the supersymmetric partition function on any Seifert manifold, generalizing previous results on lens spaces. We explain how the result for an arbitrary Seifert geometry can be obtained by combining simple building blocks, the fibering operators. These operators are half-BPS line defects, whose insertion along the $S^1$ fiber has the effect of changing the topology of the Seifert fibration. We also point out that most supersymmetric partition functions on Seifert manifolds admit a discrete refinement, corresponding to the freedom in choosing a three-dimensional spin structure. As a strong consistency check on our result, we show that the Seifert partition functions match exactly across infrared dualities. The duality relations are given by intricate (and seemingly new) mathematical identities, which we tested numerically. Finally, we discuss in detail the supersymmetric partition function on the lens space $L(p,q)_b$ with rational squashing parameter $b^2 in mathbb{Q}$, comparing our formalism to previous results, and explaining the relationship between the fibering operators and the three-dimensional holomorphic blocks.
We consider $3d$ $mathcal{N}!=!2$ gauge theories with fundamental matter plus a single field in a rank-$2$ representation. Using iteratively a process of deconfinement of the rank-$2$ field, we produce a sequence of Seiberg-dual quiver theories. We d etail this process in two examples with zero superpotential: $Usp(2N)$ gauge theory with an antisymmetric field and $U(N)$ gauge theory with an adjoint field. The fully deconfined dual quiver has $N$ nodes, and can be interpreted as an Aharony dual of theories with rank-$2$ matter. All chiral ring generators of the original theory are mapped into gauge singlet fields of the fully deconfined quiver dual.
In this paper we present a beautifully consistent web of evidence for the existence of interacting 4d rank-1 $mathcal{N}=2$ SCFTs obtained from gauging discrete subgroups of global symmetries of other existing 4d rank-1 $mathcal{N}=2$ SCFTs. The glob al symmetries that can be gauged involve a non-trivial combination of discrete subgroups of the $U(1)_R$, low-energy EM duality group $SL(2,mathbb{Z})$, and the outer automorphism group of the flavor symmetry algebra, Out($F$). The theories that we construct are remarkable in many ways: (i) two of them have exceptional $F_4$ and $G_2$ flavor groups; (ii) they substantially complete the picture of the landscape of rank-1 $mathcal{N}=2$ SCFTs as they realize all but one of the remaining consistent rank-1 Seiberg-Witten geometries that we previously constructed but were not associated to known SCFTs; and (iii) some of them have enlarged $mathcal{N}=3$ SUSY, and have not been previously constructed. They are also examples of SCFTs which violate the Shapere-Tachikawa relation between the conformal central charges and the scaling dimension of the Coulomb branch vev. We propose a modification of the formulas computing these central charges from the topologically twisted Coulomb branch partition function which correctly compute them for discretely gauged theories.
We study the two-point correlation functions of chiral/anti-chiral operators in $N=2$ supersymmetric Yang-Mills theories on $R^4$ with gauge group SU(N) and $N_f$ massless hypermultiplets in the fundamental representation. We compute them in perturba tion theory, using dimensional regularization up to two loops, and show that field-theory observables built out of dimensionless ratios of two-point renormalized correlators on $R^4$ are in perfect agreement with the same quantities computed using localization on the four-sphere, even in the non-conformal case $N_f ot=2N$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا