ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasmoid-mediated reconnection in solar UV bursts

70   0   0.0 ( 0 )
 نشر من قبل Hardi Peter
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

UV bursts are transients in the solar atmosphere with an increased impulsive emission in the extreme UV lasting for one to several tens of minutes. They often show spectral profiles indicative of a bi-directional outflow in response to magnetic reconnection. To understand UV bursts, we study how motions of magnetic elements at the surface can drive the self-consistent formation of a current sheet resulting in plasmoid-mediated reconnection. In particular, we want to study the role of the height of the reconnection in the atmosphere. We conducted numerical experiments solving the 2D MHD equations from the solar surface to the upper atmosphere. Motivated by observations, we drove a small magnetic patch embedded in a larger system of magnetic field of opposite polarity. This configuration creates an X-type neutral point in the initial potential field. The models are characterized by the plasma-beta at the height of this X point. The driving at the surface stretches the X-point into a current sheet, where plasmoids appear, and a bi-directional jet forms. This is consistent with what is expected for UV bursts or explosive events, and we provide a self-consistent model of the formation of the reconnection region in such events. The gravitational stratification gives an explanation for why explosive events are restricted to a temperature range around a few 0.1 MK, and the presence of plasmoids in the reconnection process provides an understanding of the observed variability during the transient events on a timescale of minutes. Our numerical experiments provide a comprehensive understanding of UV bursts and explosive events, in particular of how the atmospheric response changes if the reconnection happens at different plasma-beta, that is, at different heights in the atmosphere. This analysis also gives new insight into how UV bursts might be related to the photospheric Ellerman bombs.



قيم البحث

اقرأ أيضاً

Magnetic reconnection is thought to drive a wide variety of dynamic phenomena in the solar atmosphere. Yet the detailed physical mechanisms driving reconnection are difficult to discern in the remote sensing observations that are used to study the so lar atmosphere. In this paper we exploit the high-resolution instruments Interface Region Imaging Spectrograph (IRIS) and the new CHROMIS Fabry-Perot instrument at the Swedish 1-m Solar Telescope (SST) to identify the intermittency of magnetic reconnection and its association with the formation of plasmoids in so-called UV bursts in the low solar atmosphere. The Si IV 1403A UV burst spectra from the transition region show evidence of highly broadened line profiles with often non-Gaussian and triangular shapes, in addition to signatures of bidirectional flows. Such profiles had previously been linked, in idealized numerical simulations, to magnetic reconnection driven by the plasmoid instability. Simultaneous CHROMIS images in the chromospheric Ca II K 3934A line now provide compelling evidence for the presence of plasmoids, by revealing highly dynamic and rapidly moving brightenings that are smaller than 0.2 arcsec and that evolve on timescales of order seconds. Our interpretation of the observations is supported by detailed comparisons with synthetic observables from advanced numerical simulations of magnetic reconnection and associated plasmoids in the chromosphere. Our results highlight how subarcsecond imaging spectroscopy sensitive to a wide range of temperatures combined with advanced numerical simulations that are realistic enough to compare with observations can directly reveal the small-scale physical processes that drive the wide range of phenomena in the solar atmosphere.
The plasmoid-induced-reconnection model explaining solar flares based on bursty reconnection produced by an ejecting plasmoid suggests a possible relation between the ejection velocity of a plasmoid and the rate of magnetic reconnection. In this stud y, we focus on the quantitative description of this relation. We performed magnetohydrodynamic (MHD) simulations of solar flares by changing the values of resistivity and the plasmoid velocity. The plasmoid velocity has been changed by applying an additional force to the plasmoid to see how the plasmoid velocity affects the reconnection rate. An important result is that the reconnection rate has a positive correlation with the plasmoid velocity, which is consistent with the plasmoid-induced-reconnection model for solar flares. We also discuss an observational result supporting this positive correlation.
A numerical study of magnetic reconnection in the large-Lundquist-number ($S$), plasmoid-dominated regime is carried out for $S$ up to $10^7$. The theoretical model of Uzdensky {it et al.} [Phys. Rev. Lett. {bf 105}, 235002 (2010)] is confirmed and p artially amended. The normalized reconnection rate is $ ormEeffsim 0.02$ independently of $S$ for $Sgg10^4$. The plasmoid flux ($Psi$) and half-width ($w_x$) distribution functions scale as $f(Psi)sim Psi^{-2}$ and $f(w_x)sim w_x^{-2}$. The joint distribution of $Psi$ and $w_x$ shows that plasmoids populate a triangular region $w_xgtrsimPsi/B_0$, where $B_0$ is the reconnecting field. It is argued that this feature is due to plasmoid coalescence. Macroscopic monster plasmoids with $w_xsim 10$% of the system size are shown to emerge in just a few Alfven times, independently of $S$, suggesting that large disruptive events are an inevitable feature of large-$S$ reconnection.
Ellerman bombs (EBs) are small-scale intense brightenings in H$alpha$ wing images, which are generally believed to be signatures of magnetic reconnection events around the temperature minimum region of the solar atmosphere. They have a flame-like mor phology when observed near the solar limb. Recent observations from the Interface Region Imaging Spectrograph (IRIS) reveal another type of small-scale reconnection events, termed UV bursts, in the lower atmosphere. Though previous observations have shown a clear coincidence of some UV bursts and EBs, the exact relationship between these two phenomena is still under debate. We investigate the spatial and temporal relationship between flame-like EBs and UV bursts using joint near-limb observations between the 1.6--meter Goode Solar Telescope (GST) and IRIS. In total 161 EBs have been identified from the GST observations, and 20 of them reveal signatures of UV bursts in the IRIS images. Interestingly, we find that these UV bursts have a tendency to appear at the upper parts of their associated flame-like EBs. The intensity variations of most EB-related UV bursts and their corresponding EBs match well. Our results suggest that these UV bursts and EBs are likely formed at different heights during a common reconnection process.
100 - Seiji Zenitani 2015
The shock structure of a plasmoid in magnetic reconnection in low-beta plasmas is investigated by two-dimensional magnetohydrodynamic simulations. Using a high-accuracy code with unprecedented resolution, shocks, discontinuities, and their intersecti ons are resolved and clarified. Contact discontinuities emanate from triple-shock intersection points, separating fluids of different origins. Shock-diamonds inside the plasmoid appear to decelerate a supersonic flow. New shock-diamonds and a slow expansion fan are found inside the Petschek outflow. A sufficient condition for the new shock-diamonds and the relevance to astrophysical jets are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا