ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Real-time Optimization of Batch Processes using Pontryagins Minimum Principle and Set-membership Adaptation

66   0   0.0 ( 0 )
 نشر من قبل Radoslav Paulen
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies a dynamic real-time optimization in the context of model-based time-optimal operation of batch processes under parametric model mismatch. In order to tackle the model-mismatch issue, a receding-horizon policy is usually followed with frequent re-optimization. The main problem addressed in this study is the high computational burden that is usually required by such schemes. We propose an approach that uses parameterized conditions of optimality in the adaptive predictive-control fashion. The uncertainty in the model predictions is treated explicitly using reachable sets that are projected into the optimality conditions. Adaptation of model parameters is performed online using set-membership estimation. A class of batch membrane separation processes is in the scope of the presented applications, where the benefits of the presented approach are outlined.

قيم البحث

اقرأ أيضاً

In this paper we present a Learning Model Predictive Control (LMPC) strategy for linear and nonlinear time optimal control problems. Our work builds on existing LMPC methodologies and it guarantees finite time convergence properties for the closed-lo op system. We show how to construct a time varying safe set and terminal cost function using closed-loop data. The resulting LMPC policy is time varying and it guarantees recursive constraint satisfaction and non-decreasing performance. Computational efficiency is obtained by convexifing the safe set and terminal cost function. We demonstrate that, for a class of nonlinear system and convex constraints, the convex LMPC formulation guarantees recursive constraint satisfaction and non-decreasing performance. Finally, we illustrate the effectiveness of the proposed strategies on minimum time obstacle avoidance and racing examples.
Set-Membership Filter (SMF) has been extensively studied for state estimation in the presence of bounded noises with unknown statistics. Since it was first introduced in the 1960s, the studies on SMF have used the set-based description as its mathema tical framework. One important issue that has been overlooked is the optimality of SMF. In this work, we put forward a new mathematical framework for SMF using concepts of uncertain variables. We first establish two basic properties of uncertain variables, namely, the law of total range (a non-stochastic version of the law of total probability) and the equivalent Bayes rule. This enables us to put forward a general SMFing framework with established optimality. Furthermore, we obtain the optimal SMF under a non-stochastic Markov condition, which is shown to be fundamentally equivalent to the Bayes filter. Note that the classical SMF in the literature is only equivalent to the optimal SMF we obtained under the non-stochastic Markov condition. When this condition is violated, we show that the classical SMF is not optimal and it only gives an outer bound on the optimal estimation.
Moving parcels from origin to destination should not require a lot of re-planning. However, the vast number of shipments and destinations, which need to be re-aligned in real-time due to various external factors makes the delivery process a complex i ssue to tackle. Anticipating the impact of external factors though can provide more robust logistic plans which are resilient to changes. The work described in this paper, was carried out in the EU-funded COG-LO project and addresses the issue of parcel delivery across the road network making use of context-awareness information as an input for the optimization operations. A positive impact derived from the implementation of these services is expected due to complex event detection, context awareness and decision support at both local and global level of logistics operations.
Connected and Automated Vehicles (CAVs), particularly those with a hybrid electric powertrain, have the potential to significantly improve vehicle energy savings in real-world driving conditions. In particular, the Eco-Driving problem seeks to design optimal speed and power usage profiles based on available information from connectivity and advanced mapping features to minimize the fuel consumption over an itinerary. This paper presents a hierarchical multi-layer Model Predictive Control (MPC) approach for improving the fuel economy of a 48V mild-hybrid powertrain in a connected vehicle environment. Approximate Dynamic Programming (ADP) is used to solve the Receding Horizon Optimal Control Problem (RHOCP), where the terminal cost for the RHOCP is approximated as the base-policy obtained from the long-term optimization. The controller was extensively tested virtually (using both deterministic and Monte Carlo simulations) across multiple real-world routes where energy savings of more than 20% have been demonstrated. Further, the developed controller was deployed and tested at a proving ground in real-time on a test vehicle equipped with a rapid prototyping embedded controller. Real-time in-vehicle testing confirmed the energy savings observed in simulation and demonstrated the ability of the developed controller to be effective in real-time applications.
Reusable decoys offer a cost-effective alternative to the single-use hardware commonly applied to protect surface assets from threats. Such decoys portray fake assets to lure threats away from the true asset. To deceive a threat, a decoy first has to position itself such that it can break the radar lock. Considering multiple simultaneous threats, this paper introduces an approach for controlling multiple decoys to minimise the time required to break the locks of all the threats. The method includes the optimal allocation of one decoy to every threat with an assignment procedure that provides local position constraints to guarantee collision avoidance and thereby decouples the control of the decoys. A crude model of a decoy with uncertainty is considered for motion planning. The task of a decoy reaching a state in which the lock of the assigned threat can be broken is formulated as a temporal logic specification. To this end, the requirements to complete the task are modelled as time-varying set-membership constraints. The temporal and logical combination of the constraints is encoded in a mixed-integer optimisation problem. To demonstrate the results a simulated case study is provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا