ترغب بنشر مسار تعليمي؟ اضغط هنا

Shock Capturing by Bernstein Polynomials for Scalar Conservation Laws

74   0   0.0 ( 0 )
 نشر من قبل Jan Glaubitz
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Jan Glaubitz




اسأل ChatGPT حول البحث

A main disadvantage of many high-order methods for hyperbolic conservation laws lies in the famous Gibbs-Wilbraham phenomenon, once discontinuities appear in the solution. Due to the Gibbs-Wilbraham phenomenon, the numerical approximation will be polluted by spurious oscillations, which produce unphysical numerical solutions and might finally blow up the computation. In this work, we propose a new shock capturing procedure to stabilise high-order spectral element approximations. The procedure consists of going over from the original (polluted) approximation to a convex combination of the original approximation and its Bernstein reconstruction, yielding a stabilised approximation. The coefficient in the convex combination, and therefore the procedure, is steered by a discontinuity sensor and is only activated in troubled elements. Building up on classical Bernstein operators, we are thus able to prove that the resulting Bernstein procedure is total variation diminishing and preserves monotone (shock) profiles. Further, the procedure can be modified to not just preserve but also to enforce certain bounds for the solution, such as positivity. In contrast to other shock capturing methods, e.g. artificial viscosity methods, the new procedure does not reduce the time step or CFL condition and can be easily and efficiently implemented into any existing code. Numerical tests demonstrate that the proposed shock-capturing procedure is able to stabilise and enhance spectral element approximations in the presence of shocks.

قيم البحث

اقرأ أيضاً

A series of shock capturing schemes based on nonuniform nonlinear weighted interpolation on nonuniform points are developed for conservation laws. Smoothness indicator and discrete conservation laws are discussed. To make fair comparisons between dif ferent types of schemes, the properties of eigenvalues of spatial discretization matrices are proved. And the proposed schemes are compared with Weighted Compact Nonlinear Schemes (WCNS) and Flux Reconstruction or Correction Procedure via Reconstruction (FR/CPR) in dispersion, dissipation properties and numerical accuracy. Then, the proposed shock capturing schemes are used as subcell limiters for high-order FR/CPR and the hybrid scheme has superiority in data transformation and satisfying discrete conservation laws. Accuracy, discrete conservation laws and shock capturing properties are tested. Numerical results in one and two dimensions are provided to illustrate that the proposed schemes have good properties in shock capturing and can be applied as subcell limiters for FR/CPR.
In this paper, we propose a hybrid finite volume Hermite weighted essentially non-oscillatory (HWENO) scheme for solving one and two dimensional hyperbolic conservation laws. The zeroth-order and the first-order moments are used in the spatial recons truction, with total variation diminishing Runge-Kutta time discretization. The main idea of the hybrid HWENO scheme is that we first use a shock-detection technique to identify the troubled cell, then, if the cell is identified as a troubled cell, we would modify the first order moment in the troubled cell and employ HWENO reconstruction in spatial discretization; otherwise, we directly use high order linear reconstruction. Unlike other HWENO schemes, we borrow the thought of limiter for discontinuous Galerkin (DG) method to control the spurious oscillations, after this procedure, the scheme would avoid the oscillations by using HWENO reconstruction nearby discontinuities and have higher efficiency for using linear approximation straightforwardly in the smooth regions. In addition, the hybrid HWENO scheme still keeps the compactness. A collection of benchmark numerical tests for one and two dimensional cases are performed to demonstrate the numerical accuracy, high resolution and robustness of the proposed scheme.
We formulate an oversampled radial basis function generated finite difference (RBF-FD) method to solve time-dependent nonlinear conservation laws. The analytic solutions of these problems are known to be discontinuous, which leads to occurrence of no n-physical oscillations (Gibbs phenomenon) that pollute the numerical solutions and can make them unstable. We address these difficulties using a residual based artificial viscosity stabilization, where the residual of the conservation law indicates the approximate location of the shocks. The location is then used to locally apply an upwind viscosity term, which stabilizes the Gibbs phenomenon and does not smear the solution away from the shocks. The proposed method is numerically tested and proves to be robust and accurate when solving scalar conservation laws and systems of conservation laws, such as compressible Euler equations.
162 - Zhuang Zhao , Jianxian Qiu 2020
In this paper, a fifth-order Hermite weighted essentially non-oscillatory (HWENO) scheme with artificial linear weights is proposed for one and two dimensional hyperbolic conservation laws, where the zeroth-order and the first-order moments are used in the spatial reconstruction. We construct the HWENO methodology using a nonlinear convex combination of a high degree polynomial with several low degree polynomials, and the associated linear weights can be any artificial positive numbers with only requirement that their summation equals one. The one advantage of the HWENO scheme is its simplicity and easy extension to multi-dimension in engineering applications for we can use any artificial linear weights which are independent on geometry of mesh. The another advantage is its higher order numerical accuracy using less candidate stencils for two dimensional problems. In addition, the HWENO scheme still keeps the compactness as only immediate neighbor information is needed in the reconstruction and has high efficiency for directly using linear approximation in the smooth regions. In order to avoid nonphysical oscillations nearby strong shocks or contact discontinuities, we adopt the thought of limiter for discontinuous Galerkin method to control the spurious oscillations. Some benchmark numerical tests are performed to demonstrate the capability of the proposed scheme.
We propose a nonlinear registration-based model reduction procedure for rapid and reliable solution of parameterized two-dimensional steady conservation laws. This class of problems is challenging for model reduction techniques due to the presence of nonlinear terms in the equations and also due to the presence of parameter-dependent discontinuities that cannot be adequately represented through linear approximation spaces. Our approach builds on a general (i.e., independent of the underlying equation) registration procedure for the computation of a mapping $Phi$ that tracks moving features of the solution field and on an hyper-reduced least-squares Petrov-Galerkin reduced-order model for the rapid and reliable computation of the solution coefficients. The contributions of this work are twofold. First, we investigate the application of registration-based methods to two-dimensional hyperbolic systems. Second, we propose a multi-fidelity approach to reduce the offline costs associated with the construction of the parameterized mapping and the reduced-order model. We discuss the application to an inviscid supersonic flow past a parameterized bump, to illustrate the many features of our method and to demonstrate its effectiveness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا