ﻻ يوجد ملخص باللغة العربية
The focal plane of the NIRSpec instrument on board the James Webb Space Telescope (JWST) is equipped with two Teledyne H2RG near-IR detectors, state-of-the-art HgCdTe sensors with excellent noise performance. Once JWST is in space, however, the noise level in NIRSpec exposures will be affected by the cosmic ray (CR) fluence at the JWST orbit and our ability to detect CR hits and to mitigate their effect. We have simulated the effect of CRs on NIRSpec detectors by injecting realistic CR events onto dark exposures that were recently acquired during the JWST cryo-vacuum test campaign undertaken at Johnson Space Flight Center. Here we present the method we have implemented to detect the hits in the exposure integration cubes, to reject the affected data points within our ramp-to-slope processing pipeline (the prototype of the NIRSpec official pipeline), and assess the performance of this method for different choices of the algorithm parameters. Using the optimal parameter set to reject CR hits from the data, we estimate that, for an exposure length of 1,000 s, the presence of CRs in space will lead to an increase of typically ~7% in the detector noise level with respect to the on-ground performance, and the corresponding decrease in the limiting sensitivity of the instrument, for the medium and high-spectral resolution modes.
Context: The NIRSpec instrument for the James Webb Space Telescope (JWST) can be operated in multiobject (MOS), long-slit, and integral field (IFU) mode with spectral resolutions from 100 to 2700. Its MOS mode uses about a quarter of a million indivi
The Near-Infrared Spectrograph (NIRSpec) is one of four instruments aboard the James Webb Space Telescope (JWST). NIRSpec is developed by ESA with AIRBUS Defence & Space as prime contractor. The calibration of its various observing modes is a fundame
An accurate knowledge of the fluorescence yield and its dependence on atmospheric properties such as pressure, temperature or humidity is essential to obtain a reliable measurement of the primary energy of cosmic rays in experiments using the fluores
We use hydrodynamical simulations of two Milky Way-mass galaxies to demonstrate the impact of cosmic-ray pressure on the kinematics of cool and warm circumgalactic gas. Consistent with previous studies, we find that cosmic-ray pressure can dominate o
Large reservoirs of cold (~ 10^4 K) gas exist out to and beyond the virial radius in the circumgalactic medium (CGM) of all types of galaxies. Photoionization modeling suggests that cold CGM gas has significantly lower densities than expected by theo