ﻻ يوجد ملخص باللغة العربية
The interpretation of redshift surveys requires modeling the relationship between large-scale fluctuations in the observed number density of tracers, $delta_mathrm{h}$, and the underlying matter density, $delta$. Bias models often express $delta_mathrm{h}$ as a truncated series of integro-differential operators acting on $delta$, each weighted by a bias parameter. Due to the presence of `composite operators (obtained by multiplying fields evaluated at the same spatial location), the linear bias parameter measured from clustering statistics does not coincide with that appearing in the bias expansion. This issue can be cured by re-writing the expansion in terms of `renormalised operators. After providing a pedagogical and comprehensive review of bias renormalisation in perturbation theory, we generalize the concept to non-perturbative dynamics and successfully apply it to dark-matter haloes extracted from a large suite of N-body simulations. When comparing numerical and perturbative results, we highlight the effect of the window function employed to smooth the random fields. We then measure the bias parameters as a function of halo mass by fitting a non-perturbative bias model (both before and after applying renormalisation) to the cross spectrum $P_{delta_mathrm{h}delta}(k)$. Finally, we employ Bayesian model selection to determine the optimal operator set to describe $P_{delta_mathrm{h}delta}(k)$ for $k<0.2,h$ Mpc$^{-1}$ at redshift $z=0$. We find that it includes $delta, abla^2delta, delta^2$ and the square of the traceless tidal tensor, $s^2$. Considering higher-order terms (in $delta$) leads to overfitting as they cannot be precisely constrained by our data. We also notice that next-to-leading-order perturbative solutions are inaccurate for $kgtrsim 0.1,h$ Mpc$^{-1}$.
The description of the abundance and clustering of halos for non-Gaussian initial conditions has recently received renewed interest, motivated by the forthcoming large galaxy and cluster surveys, which can potentially yield constraints of order unity
We derive a simple prescription for including beyond-linear halo bias within the standard, analytical halo-model power spectrum calculation. This results in a corrective term that is added to the usual two-halo term. We measure this correction using
In the next decade, cosmological surveys will have the statistical power to detect the absolute neutrino mass scale. N-body simulations of large-scale structure formation play a central role in interpreting data from such surveys. Yet these simulatio
We use N-body simulations to examine whether a characteristic turnaround radius, as predicted from the spherical collapse model in a $rm {Lambda CDM}$ Universe, can be meaningfully identified for galaxy clusters, in the presence of full three-dimensi
We perform a series of high-resolution N-body simulations of cosmological structure formation starting from Gaussian and non-Gaussian initial conditions. We adopt the best-fitting cosmological parameters of WMAP (3rd- and 5th-year) and we consider no