ترغب بنشر مسار تعليمي؟ اضغط هنا

Admissible and attainable convergence behavior of block Arnoldi and GMRES

105   0   0.0 ( 0 )
 نشر من قبل Marie Kub\\'inov\\'a
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well-established that any non-increasing convergence curve is possible for GMRES and a family of pairs $(A,b)$ can be constructed for which GMRES exhibits a given convergence curve with $A$ having arbitrary spectrum. No analog of this result has been established for block GMRES, wherein multiple right-hand sides are considered. By reframing the problem as a single linear system over a ring of square matrices, we develop convergence results for block Arnoldi and block GMRES. In particular, we show what convergence behavior is admissible for block GMRES and how the matrices and right-hand sides producing any admissible behavior can be constructed. Moreover, we show that the convergence of the block Arnoldi method for eigenvalue approximation can be almost fully independent of the convergence of block GMRES for the same coefficient matrix and the same starting vectors.

قيم البحث

اقرأ أيضاً

140 - Kirk M. Soodhalter 2014
We analyze the the convergence behavior of block GMRES and characterize the phenomenon of stagnation which is then related to the behavior of the block FOM method. We generalize the block FOM method to generate well-defined approximations in the case that block FOM would normally break down, and these generalized solutions are used in our analysis. This behavior is also related to the principal angles between the column-space of the previous block GMRES residual and the current minimum residual constraint space. At iteration $j$, it is shown that the proper generalization of GMRES stagnation to the block setting relates to the columnspace of the $j$th block Arnoldi vector. Our analysis covers both the cases of normal iterations as well as block Arnoldi breakdown wherein dependent basis vectors are replaced with random ones. Numerical examples are given to illustrate what we have proven, including a small application problem to demonstrate the validity of the analysis in a less pathological case.
GMRES is one of the most popular iterative methods for the solution of large linear systems of equations that arise from the discretization of linear well-posed problems, such as Dirichlet boundary value problems for elliptic partial differential equ ations. The method is also applied to iteratively solve linear systems of equations that are obtained by discretizing linear ill-posed problems, such as many inverse problems. However, GMRES does not always perform well when applied to the latter kind of problems. This paper seeks to shed some light on reasons for the poor performance of GMRES in certain situations, and discusses some remedies based on specific kinds of preconditioning. The standard implementation of GMRES is based on the Arnoldi process, which also can be used to define a solution subspace for Tikhonov or TSVD regularization, giving rise to the Arnoldi-Tikhonov and Arnoldi-TSVD methods, respectively. The performance of the GMRES, the Arnoldi-Tikhonov, and the Arnoldi-TSVD methods is discussed. Numerical examples illustrate properties of these methods.
We propose a block Krylov subspace version of the GCRO-DR method proposed in [Parks et al. SISC 2005], which is an iterative method allowing for the efficient minimization of the the residual over an augmented block Krylov subspace. We offer a clean derivation of the method and discuss methods of selecting recycling subspaces at restart as well as implementation decisions in the context of high-performance computing. Numerical experiments are split into those demonstrating convergence properties and those demonstrating the data movement and cache efficiencies of the dominant operations of the method, measured using processor monitoring code from Intel.
We present a polynomial preconditioner for solving large systems of linear equations. The polynomial is derived from the minimum residual polynomial and is straightforward to compute and implement. It this paper, we study the polynomial preconditione r applied to GMRES; however it could be used with any Krylov solver. Stability control using added roots allows for high degree polynomials. We discuss the effectiveness and challenges of root-adding and give an additional check for stability. This polynomial preconditioning algorithm can dramatically improve convergence for difficult problems and can reduce dot products by an even greater margin.
In this paper, we extend to the block case, the a posteriori bound showing superlinear convergence of Conjugate Gradients developed in [J. Comput. Applied Math., 48 (1993), pp. 327- 341], that is, we obtain similar bounds, but now for block Conjugate Gradients. We also present a series of computational experiments, illustrating the validity of the bound developed here, as well as the bound from [SIAM Review, 47 (2005), pp. 247-272] using angles between subspaces. Using these bounds, we make some observations on the onset of superlinearity, and how this onset depends on the eigenvalue distribution and the block size.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا