ﻻ يوجد ملخص باللغة العربية
Here we study the essence of $f(R,T)$ gravitation theory in five dimensional Universe and see the role of dark energy in the form of wet dark fluid in such a Universe. It is found that the dark energy is not exaggerated in contributing to the accelerating expansion of the Universe though the expansion is inherent as a result of the theory itself and due to the geometric contribution of matter. It is interesting to see that in some model it is found that there was some era before the beginning of the present era, and some of the model Universe came out to be either oscillatory or cyclic. Some of the models are seen to go to $Lambda CDM$ models in late future as in Einstein gravitation theory, starting the evolution with a big bang. Most of the models undergo early inflation as well as late time accelerating expansion thus defining as good models for real astrophysical situations, with dark energy playing fundamental role in these Universe.
Traversable wormholes, studied by Morris and Thorne cite{Morris1} in general relativity, are investigated in this research paper in $f(R,T)$ gravity by introducing a new form of non-linear $f(R,T)$ function. By using this novel function, the Einstein
The $f(R,T)$ theory of gravitation is an extended theory of gravitation in which the gravitational action contains both the Ricci scalar $R$ and the trace of energy momentum tensor $T$ and hence the cosmological models based on $f(R,T)$ gravity are e
Anisotropic cosmological models are constructed in $f(R,T)$ gravity theory to investigate the dynamics of universe concerning the late time cosmic acceleration. Using a more general and simple approach, the effect of the coupling constant and anisotr
In the present work, a new form of the logarithmic shape function is proposed for the linear $f(R,T)$ gravity, $f(R,T)=R+2lambda T$ where $lambda$ is an arbitrary coupling constant, in wormhole geometry. The desired logarithmic shape function accompl
In Universal Extra Dimension models, the lightest Kaluza-Klein (KK) particle is generically the first KK excitation of the photon and can be stable, serving as particle dark matter. We calculate the thermal relic abundance of the KK photon for a gene