ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase evolution and superconductivity enhancement in Se-substituted MoTe$_2$ thin films

298   0   0.0 ( 0 )
 نشر من قبل Guangtong Liu G. T. Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The strong spin$-$orbit coupling (SOC) and numerous crystal phases in few$-$layer transition metal dichalcogenides (TMDCs) MX$_2$ (M$=$W, Mo, and X$=$Te, Se, S) has led to a variety of novel physics, such as Ising superconductivity and quantum spin Hall effect realized in monolayer 2H$-$ and Td$-$MX$_2$, respectively. Consecutive tailoring of the MX$_2$ structure from 2H to Td phase may realize the long$-$sought topological superconductivity in one material system by incorporating superconductivity and quantum spin Hall effect together. In this work, by combing Raman spectrum, X-ray photoelectron spectrum (XPS), scanning transmission electron microscopy imaging (STEM) as well as electrical transport measurements, we demonstrate that a consecutively structural phase transitions from Td to 1T$$ to 2H polytype can be realized as the Se-substitution concentration increases. More importantly, the Se$-$substitution has been found to notably enhance the superconductivity of the MoTe$_2$ thin film, which is interpreted as the introduction of the two$-$band superconductivity. The chemical constituent induced phase transition offers a new strategy to study the s$_{+-}$ superconductivity and the possible topological superconductivity as well as to develop phase$-$sensitive devices based on MX$_2$ materials.

قيم البحث

اقرأ أيضاً

We report the first experimental observation of superconductivity in Cd$_3$As$_2$ thin films without application of external pressure. Surface studies suggest that the observed transport characteristics are related to the polycrystalline continuous p art of investigated films with homogeneous distribution of elements and the Cd-to-As ratio close to stoichiometric Cd$_3$As$_2$. The latter is also supported by Raman spectra of the studied films, which are similar to those of Cd$_3$As$_2$ single crystals. The formation of superconducting phase in films under study is confirmed by the characteristic behavior of temperature and magnetic field dependence of samples resistances, as well as by the presence of pronounced zero-resistance plateaux in $dV/dI$ characteristics. The corresponding $H_c-T_c$ plots reveal a clearly pronounced linear behavior within the intermediate temperature range, similar to that observed for bulk Cd$_3$As$_2$ and Bi$_2$Se$_3$ films under pressure, suggesting the possibility of nontrivial pairing in the films under investigation. We discuss a possible role of sample inhomogeneities and crystal strains in the observed phenomena.
Superconductivity in granular films is controlled by the grain size and the inter-grain coupling. In a two-component granular system formed by a random mixture of a normal metal (N) and a superconductor (S), the superconducting nano-grains may become coupled through S-N weak links, thereby affecting the superconducting properties of the network. We report on the study of superconductivity in immiscible Nb-Cu nanocomposite films with varying compositions. The microstructure of the films revealed the presence of phase separated, closely spaced, nano-grains of Nb and Cu whose sizes changed marginally with composition. The superconducting transition temperature (Tc0) of the films decreased with increasing concentration of Cu with a concomitant decrease in the upper critical field (Hc2) and the critical current (Ic). Our results indicate the presence of superconducting phase fluctuations in all films with varying Nb:Cu content which not only affected the temperature for the formation of a true phase coherent superconducting condensate in the films but also other superconducting properties.
173 - Wenhao Liu , Sheng Li , hanlin Wu 2021
Two-dimensional transition metal dichalcogenide PdTe$_2$ recently attracts much attention due to its phase coexistence of type-II Dirac semimetal and type-I superconductivity. Here we report a 67 % enhancement of superconducting transition temperatur e in the 1T-PdSeTe in comparison to that of PdTe2 through partial substitution of Te atoms by Se. The superconductivity has been unambiguously confirmed by the magnetization, resistivity and specific heat measurements. 1T-PdSeTe shows type-II superconductivity with large anisotropy and non-bulk superconductivity nature with volume fraction ~ 20 % estimated from magnetic and heat capacity measurements. 1T-PdSeTe expands the family of superconducting transition metal dichalcogenides and thus provides additional insights for understanding superconductivity and topological physics in the 1T-PdTe$_2$ system
Disordered thin films close to the superconducting-insulating phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be re vealed for example by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks that do not fit the BCS prediction. To explain these observations, we consider the effect of finite-range superconducting fluctuations on the density of states, focusing on the insulating side of the SIT. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks, even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks observed, for example, in the pseudo gap regime of high-temperature superconductors.
Structural, magnetic and magnetotransport properties of (Bi$_{1-x}$Eu$_x$)$_2$Se$_3$ thin films have been studied experimentally as a function of Eu content. The films were synthesized by MBE. It is demonstrated that Eu distribution is not uniform, i t enter quint-layers forming inside them plain (pancake-like) areas containing Eu atoms, which sizes and concentration increase with the growth of Eu content. Positive magnetoresistance related to the weak antilocalization was observed up to 15K. The antilocalization was not followed by weak localization as theory predicts for nontrivial topological states. Surprisingly, the features of antilocalization were seen even at Eu content $x$ $=$ 0.21. With the increase of Eu content the transition to ferromagnetic state occurs at $x$ about 0.1 and with the Curie temperature $approx$ 8K, that rises up to 64K for $x$ $=$ 0.21. At temperatures above 1-2 K, the dephasing length is proportional to $T^{-1/2}$ indicating the dominant contribution of inelastic $e-e$ scattering into electron phase breaking. However, at low temperatures the dephasing length saturates, that could be due to the scattering on magnetic ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا