ﻻ يوجد ملخص باللغة العربية
Online users generate tremendous amounts of textual information by participating in different activities, such as writing reviews and sharing tweets. This textual data provides opportunities for researchers and business partners to study and understand individuals. However, this user-generated textual data not only can reveal the identity of the user but also may contain individuals private information (e.g., age, location, gender). Hence, you are what you write as the saying goes. Publishing the textual data thus compromises the privacy of individuals who provided it. The need arises for data publishers to protect peoples privacy by anonymizing the data before publishing it. It is challenging to design effective anonymization techniques for textual information which minimizes the chances of re-identification and does not contain users sensitive information (high privacy) while retaining the semantic meaning of the data for given tasks (high utility). In this paper, we study this problem and propose a novel double privacy preserving text representation learning framework, DPText, which learns a textual representation that (1) is differentially private, (2) does not contain private information and (3) retains high utility for the given task. Evaluating on two natural language processing tasks, i.e., sentiment analysis and part of speech tagging, we show the effectiveness of this approach in terms of preserving both privacy and utility.
In this paper, we address the problem of privacy-preserving distributed learning and the evaluation of machine-learning models by analyzing it in the widespread MapReduce abstraction that we extend with privacy constraints. We design SPINDLE (Scalabl
Billions of text analysis requests containing private emails, personal text messages, and sensitive online reviews, are processed by recurrent neural networks (RNNs) deployed on public clouds every day. Although prior secure networks combine homomorp
As machine learning becomes a practice and commodity, numerous cloud-based services and frameworks are provided to help customers develop and deploy machine learning applications. While it is prevalent to outsource model training and serving tasks in
In this paper, we address the problem of privacy-preserving training and evaluation of neural networks in an $N$-party, federated learning setting. We propose a novel system, POSEIDON, the first of its kind in the regime of privacy-preserving neural
Tree-based models are among the most efficient machine learning techniques for data mining nowadays due to their accuracy, interpretability, and simplicity. The recent orthogonal needs for more data and privacy protection call for collaborative priva