ترغب بنشر مسار تعليمي؟ اضغط هنا

Period functions associated to real-analytic modular forms

154   0   0.0 ( 0 )
 نشر من قبل Nikolaos Diamantis
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We define L-functions for the class of real-analytic modular forms recently introduced by F. Brown. We establish their main properties and construct the analogue of period polynomial in cases of special interest, including those of modular iterated integrals.



قيم البحث

اقرأ أيضاً

In this paper, we explicitly construct harmonic Maass forms that map to the weight one theta series associated by Hecke to odd ray class group characters of real quadratic fields. From this construction, we give precise arithmetic information contain ed in the Fourier coefficients of the holomorphic part of the harmonic Maass form, establishing the main part of a conjecture of the second author.
87 - Nikolaos Diamantis 2020
We construct an explicit family of modular iterated integrals which involves cusp forms. This leads to a new method of producing invaria
135 - Johan Bosman 2007
In this paper we explicitly compute mod-l Galois representations associated to modular forms. To be precise, we look at cases with l<=23 and the modular forms considered will be cusp forms of level 1 and weight up to 22. We present the result in term s of polynomials associated to the projectivised representations. As an application, we will improve a known result on Lehmers non-vanishing conjecture for Ramanujans tau function.
We investigate non-vanishing properties of $L(f,s)$ on the real line, when $f$ is a Hecke eigenform of half-integral weight $k+{1over 2}$ on $Gamma_0(4).$
A generalized Riemann hypothesis states that all zeros of the completed Hecke $L$-function $L^*(f,s)$ of a normalized Hecke eigenform $f$ on the full modular group should lie on the vertical line $Re(s)=frac{k}{2}.$ It was shown by Kohnen that there exists a Hecke eigenform $f$ of weight $k$ such that $L^*(f,s) eq 0$ for sufficiently large $k$ and any point on the line segments $Im(s)=t_0, frac{k-1}{2} < Re(s) < frac{k}{2}-epsilon, frac{k }{2}+epsilon < Re(s) < frac{k+1}{2},$ for any given real number $t_0$ and a positive real number $epsilon.$ This paper concerns the non-vanishing of the product $L^*(f,s)L^*(f,w)$ $(s,win mathbb{C})$ on average.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا