ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic modified equations for symplectic methods applied to rough Hamiltonian systems based on the Wong--Zakai approximation

71   0   0.0 ( 0 )
 نشر من قبل Chuying Huang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the stochastic modified equation which plays an important role in the stochastic backward error analysis for explaining the mathematical mechanism of a numerical method. The contribution of this paper is threefold. First, we construct a new type of stochastic modified equation, which is a perturbation of the Wong--Zakai approximation of the rough differential equation. For a symplectic method applied to a rough Hamiltonian system, the associated stochastic modified equation is proved to have a Hamiltonian formulation. Second, the pathwise convergence order of the truncated modified equation to the numerical method is obtained by techniques in the rough path theory. Third, if increments of noises are simulated by truncated random variables, we show that the one-step error can be made exponentially small with respect to the time step size. Numerical experiments verify our theoretical results.

قيم البحث

اقرأ أيضاً

Generalized Additive Runge-Kutta schemes have shown to be a suitable tool for solving ordinary differential equations with additively partitioned right-hand sides. This work generalizes these GARK schemes to symplectic GARK schemes for additively par titioned Hamiltonian systems. In a general setting, we derive conditions for symplecticeness, as well as symmetry and time-reversibility. We show how symplectic and symmetric schemes can be constructed based on schemes which are only symplectic. Special attention is given to the special case of partitioned schemes for Hamiltonians split into multiple potential and kinetic energies. Finally we show how symplectic GARK schemes can use efficiently different time scales and evaluation costs for different potentials by using different order for these parts.
It is well-known that a numerical method which is at the same time geometric structure-preserving and physical property-preserving cannot exist in general for Hamiltonian partial differential equations. In this paper, we present a novel class of para metric multi-symplectic Runge-Kutta methods for Hamiltonian wave equations, which can also conserve energy simultaneously in a weaker sense with a suitable parameter. The existence of such a parameter, which enforces the energy-preserving property, is proved under certain assumptions on the fixed step sizes and the fixed initial condition. We compare the proposed method with the classical multi-symplectic Runge-Kutta method in numerical experiments, which shows the remarkable energy-preserving property of the proposed method and illustrate the validity of theoretical results.
We develop in this work a numerical method for stochastic differential equations (SDEs) with weak second order accuracy based on Gaussian mixture. Unlike the conventional higher order schemes for SDEs based on It^o-Taylor expansion and iterated It^o integrals, the proposed scheme approximates the probability measure $mu(X^{n+1}|X^n=x_n)$ by a mixture of Gaussians. The solution at next time step $X^{n+1}$ is then drawn from the Gaussian mixture with complexity linear in the dimension $d$. This provides a new general strategy to construct efficient high weak order numerical schemes for SDEs.
HNets is a class of neural networks on grounds of physical prior for learning Hamiltonian systems. This paper explains the influences of different integrators as hyper-parameters on the HNets through error analysis. If we define the network target as the map with zero empirical loss on arbitrary training data, then the non-symplectic integrators cannot guarantee the existence of the network targets of HNets. We introduce the inverse modified equations for HNets and prove that the HNets based on symplectic integrators possess network targets and the differences between the network targets and the original Hamiltonians depend on the accuracy orders of the integrators. Our numerical experiments show that the phase flows of the Hamiltonian systems obtained by symplectic HNets do not exactly preserve the original Hamiltonians, but preserve the network targets calculated; the loss of the network target for the training data and the test data is much less than the loss of the original Hamiltonian; the symplectic HNets have more powerful generalization ability and higher accuracy than the non-symplectic HNets in addressing predicting issues. Thus, the symplectic integrators are of critical importance for HNets.
Often in applications ranging from medical imaging and sensor networks to error correction and data science (and beyond), one needs to solve large-scale linear systems in which a fraction of the measurements have been corrupted. We consider solving s uch large-scale systems of linear equations $mathbf{A}mathbf{x}=mathbf{b}$ that are inconsistent due to corruptions in the measurement vector $mathbf{b}$. We develop several variants of iterative methods that converge to the solution of the uncorrupted system of equations, even in the presence of large corruptions. These methods make use of a quantile of the absolute values of the residual vector in determining the iterate update. We present both theoretical and empirical results that demonstrate the promise of these iterative approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا