ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal and Operational Benchmarking of Quantum Memories

54   0   0.0 ( 0 )
 نشر من قبل Xiao Yuan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum memory -- the capacity to store and faithfully recover unknown quantum states -- is essential for quantum-enhanced technology. There is thus a pressing need for operationally meaningful means to benchmark candidate memories across diverse physical platforms. Here we introduce a universal benchmark distinguished by its relevance across multiple key operational settings, exactly quantifying (1) the memorys robustness to noise, (2) the number of noiseless qubits needed for its synthesis, (3) its potential to speed up statistical sampling tasks, and (4) performance advantage in non-local games beyond classical limits. The measure is analytically computable for low-dimensional systems and can be efficiently bounded in experiment without tomography. We thus illustrate quantum memory as a meaningful resource, with our benchmark reflecting both its cost of creation and what it can accomplish. We demonstrate the benchmark on the five-qubit IBM Q hardware, and apply it to witness efficacy of error-suppression techniques and quantify non-Markovian noise. We thus present an experimentally accessible, practically meaningful, and universally relevant quantifier of a memorys capability to preserve quantum advantage.



قيم البحث

اقرأ أيضاً

Concomitant with the rapid development of quantum technologies, challenging demands arise concerning the certification and characterization of devices. The promises of the field can only be achieved if stringent levels of precision of components can be reached and their functioning guaranteed. This review provides a brief overview of the known characterization methods of certification, benchmarking, and tomographic recovery of quantum states and processes, as well as their applications in quantum computing, simulation, and communication.
Time-resolved photon detection can be used to generate entanglement between distinguishable photons. This technique can be extended to entangle quantum memories that emit photons with different frequencies and identical temporal profiles without the loss of entanglement rate or fidelity. We experimentally realize this process using remotely trapped $^{171}$Yb$^+$ ions where heralded entanglement is generated by interfering distinguishable photons. This technique may be necessary for future modular quantum systems and networks that are composed of heterogeneous qubits.
We introduce a figure of merit for a quantum memory which measures the preservation of entanglement between a qubit stored in and retrieved from the memory and an auxiliary qubit. We consider a general quantum memory system consisting of a medium of two level absorbers, with the qubit to be stored encoded in a single photon. We derive an analytic expression for our figure of merit taking into account Gaussian fluctuations in the Hamiltonian parameters, which for example model inhomogeneous broadening and storage time dephasing. Finally we specialize to the case of an atomic quantum memory where fluctuations arise predominantly from Doppler broadening and motional dephasing.
Quantum memories are essential for quantum information processing and long-distance quantum communication. The field has recently seen a lot of progress, and the present focus issue offers a glimpse of these developments, showing both experimental an d theoretical results from many of the leading groups around the world. On the experimental side, it shows work on cold gases, warm vapors, rare-earth ion doped crystals and single atoms. On the theoretical side there are in-depth studies of existing memory protocols, proposals for new protocols including approaches based on quantum error correction, and proposals for new applications of quantum storage. Looking forward, we anticipate many more exciting results in this area.
Recent advances in quantum computers and simulators are steadily leading us towards full-scale quantum computing devices. Due to the fact that debugging is necessary to create any computing device, quantum tomography (QT) is a critical milestone on t his path. In practice, the choice between different QT methods faces the lack of comparison methodology. Modern research provides a wide range of QT methods, which differ in their application areas, as well as experimental and computational complexity. Testing such methods is also being made under different conditions, and various efficiency measures are being applied. Moreover, many methods have complex programming implementations; thus, comparison becomes extremely difficult. In this study, we have developed a general methodology for comparing quantum state tomography methods. The methodology is based on an estimate of the resources needed to achieve the required accuracy. We have developed a software library (in MATLAB and Python) that makes it easy to analyze any QT method implementation through a series of numerical experiments. The conditions for such a simulation are set by the number of tests corresponding to real physical experiments. As a validation of the proposed methodology and software, we analyzed and compared a set of QT methods. The analysis revealed some method-specific features and provided estimates of the relative efficiency of the methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا