ترغب بنشر مسار تعليمي؟ اضغط هنا

Fine-grained robust prosody transfer for single-speaker neural text-to-speech

218   0   0.0 ( 0 )
 نشر من قبل Srikanth Ronanki
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a neural text-to-speech system for fine-grained prosody transfer from one speaker to another. Conventional approaches for end-to-end prosody transfer typically use either fixed-dimensional or variable-length prosody embedding via a secondary attention to encode the reference signal. However, when trained on a single-speaker dataset, the conventional prosody transfer systems are not robust enough to speaker variability, especially in the case of a reference signal coming from an unseen speaker. Therefore, we propose decoupling of the reference signal alignment from the overall system. For this purpose, we pre-compute phoneme-level time stamps and use them to aggregate prosodic features per phoneme, injecting them into a sequence-to-sequence text-to-speech system. We incorporate a variational auto-encoder to further enhance the latent representation of prosody embeddings. We show that our proposed approach is significantly more stable and achieves reliable prosody transplantation from an unseen speaker. We also propose a solution to the use case in which the transcription of the reference signal is absent. We evaluate all our proposed methods using both objective and subjective listening tests.

قيم البحث

اقرأ أيضاً

112 - Mingjian Chen , Xu Tan , Yi Ren 2020
Transformer-based text to speech (TTS) model (e.g., Transformer TTS~cite{li2019neural}, FastSpeech~cite{ren2019fastspeech}) has shown the advantages of training and inference efficiency over RNN-based model (e.g., Tacotron~cite{shen2018natural}) due to its parallel computation in training and/or inference. However, the parallel computation increases the difficulty while learning the alignment between text and speech in Transformer, which is further magnified in the multi-speaker scenario with noisy data and diverse speakers, and hinders the applicability of Transformer for multi-speaker TTS. In this paper, we develop a robust and high-quality multi-speaker Transformer TTS system called MultiSpeech, with several specially designed components/techniques to improve text-to-speech alignment: 1) a diagonal constraint on the weight matrix of encoder-decoder attention in both training and inference; 2) layer normalization on phoneme embedding in encoder to better preserve position information; 3) a bottleneck in decoder pre-net to prevent copy between consecutive speech frames. Experiments on VCTK and LibriTTS multi-speaker datasets demonstrate the effectiveness of MultiSpeech: 1) it synthesizes more robust and better quality multi-speaker voice than naive Transformer based TTS; 2) with a MutiSpeech model as the teacher, we obtain a strong multi-speaker FastSpeech model with almost zero quality degradation while enjoying extremely fast inference speed.
With rapid progress in neural text-to-speech (TTS) models, personalized speech generation is now in high demand for many applications. For practical applicability, a TTS model should generate high-quality speech with only a few audio samples from the given speaker, that are also short in length. However, existing methods either require to fine-tune the model or achieve low adaptation quality without fine-tuning. In this work, we propose StyleSpeech, a new TTS model which not only synthesizes high-quality speech but also effectively adapts to new speakers. Specifically, we propose Style-Adaptive Layer Normalization (SALN) which aligns gain and bias of the text input according to the style extracted from a reference speech audio. With SALN, our model effectively synthesizes speech in the style of the target speaker even from single speech audio. Furthermore, to enhance StyleSpeechs adaptation to speech from new speakers, we extend it to Meta-StyleSpeech by introducing two discriminators trained with style prototypes, and performing episodic training. The experimental results show that our models generate high-quality speech which accurately follows the speakers voice with single short-duration (1-3 sec) speech audio, significantly outperforming baselines.
Recent neural text-to-speech (TTS) models with fine-grained latent features enable precise control of the prosody of synthesized speech. Such models typically incorporate a fine-grained variational autoencoder (VAE) structure, extracting latent featu res at each input token (e.g., phonemes). However, generating samples with the standard VAE prior often results in unnatural and discontinuous speech, with dramatic prosodic variation between tokens. This paper proposes a sequential prior in a discrete latent space which can generate more naturally sounding samples. This is accomplished by discretizing the latent features using vector quantization (VQ), and separately training an autoregressive (AR) prior model over the result. We evaluate the approach using listening tests, objective metrics of automatic speech recognition (ASR) performance, and measurements of prosody attributes. Experimental results show that the proposed model significantly improves the naturalness in random sample generation. Furthermore, initial experiments demonstrate that randomly sampling from the proposed model can be used as data augmentation to improve the ASR performance.
Recently, end-to-end multi-speaker text-to-speech (TTS) systems gain success in the situation where a lot of high-quality speech plus their corresponding transcriptions are available. However, laborious paired data collection processes prevent many i nstitutes from building multi-speaker TTS systems of great performance. In this work, we propose a semi-supervised learning approach for multi-speaker TTS. A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation. The experiment results demonstrate that with only an hour of paired speech data, no matter the paired data is from multiple speakers or a single speaker, the proposed model can generate intelligible speech in different voices. We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy. In addition, our analysis reveals that different speaker characteristics of the paired data have an impact on the effectiveness of semi-supervised TTS.
While speaker adaptation for end-to-end speech synthesis using speaker embeddings can produce good speaker similarity for speakers seen during training, there remains a gap for zero-shot adaptation to unseen speakers. We investigate multi-speaker mod eling for end-to-end text-to-speech synthesis and study the effects of different types of state-of-the-art neural speaker embeddings on speaker similarity for unseen speakers. Learnable dictionary encoding-based speaker embeddings with angular softmax loss can improve equal error rates over x-vectors in a speaker verification task; these embeddings also improve speaker similarity and naturalness for unseen speakers when used for zero-shot adaptation to new speakers in end-to-end speech synthesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا