ترغب بنشر مسار تعليمي؟ اضغط هنا

Wellposedness and regularity estimate for stochastic Cahn--Hilliard equation with unbounded noise diffusion

133   0   0.0 ( 0 )
 نشر من قبل Jianbo Cui
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we consider the stochastic Cahn--Hilliard equation driven by multiplicative space-time white noise with diffusion coefficient of sublinear growth. By introducing the spectral Galerkin method, we first obtain the well-posedness of the approximated equation in finite dimension. Then with the help of the semigroup theory and the factorization method, the approximation processes is shown to possess many desirable properties. Further, we show that the approximation process is strongly convergent in certain Banach space via the interpolation inequality and variational approach. Finally, the global existence and regularity estimate of the unique solution process are proven by means of the strong convergence of the approximation process.

قيم البحث

اقرأ أيضاً

111 - Jianbo Cui , Jialin Hong 2019
In this article, we develop and analyze a full discretization, based on the spatial spectral Galerkin method and the temporal drift implicit Euler scheme, for the stochastic Cahn--Hilliard equation driven by multiplicative space-time white noise. By introducing an appropriate decomposition of the numerical approximation, we first use the factorization method to deduce the a priori estimate and regularity estimate of the proposed full discretization. With the help of the variation approach, we then obtain the sharp spatial and temporal convergence rate in negative Sobolev space in mean square sense. Furthermore, the sharp mean square convergence rates in both time and space are derived via the Sobolev interpolation inequality and semigroup theory. To the best of our knowledge, this is the first result on the convergence rate of temporally and fully discrete numerical methods for the stochastic Cahn--Hilliard equation driven by multiplicative space-time white noise.
We consider a stochastic partial differential equation with logarithmic (or negative power) nonlinearity, with one reflection at 0 and with a constraint of conservation of the space average. The equation, driven by the derivative in space of a space- time white noise, contains a bi-Laplacian in the drift. The lack of the maximum principle for the bi-Laplacian generates difficulties for the classical penalization method, which uses a crucial monotonicity property. Being inspired by the works of Debussche and Zambotti, we use a method based on infinite dimensional equations, approximation by regular equations and convergence of the approximated semi-group. We obtain existence and uniqueness of solution for nonnegative intial conditions, results on the invariant measures, and on the reflection measures.
We consider the Cahn-Hilliard equation in one space dimension, perturbed by the derivative of a space and time white noise of intensity $epsilon^{frac 12}$, and we investigate the effect of the noise, as $epsilon to 0$, on the solutions when the init ial condition is a front that separates the two stable phases. We prove that, given $gamma< frac 23$, with probability going to one as $epsilon to 0$, the solution remains close to a front for times of the order of $epsilon^{-gamma}$, and we study the fluctuations of the front in this time scaling. They are given by a one dimensional continuous process, self similar of order $frac 14$ and non Markovian, related to a fractional Brownian motion and for which a couple of representations are given.
In this article, we consider the stochastic Cahn--Hilliard equation driven by space-time white noise. We discretize this equation by using a spatial spectral Galerkin method and a temporal accelerated implicit Euler method. The optimal regularity pro perties and uniform moment bounds of the exact and numerical solutions are shown. Then we prove that the proposed numerical method is strongly convergent with the sharp convergence rate in a negative Sobolev space. By using an interpolation approach, we deduce the spatial optimal convergence rate and the temporal super-convergence rate of the proposed numerical method in strong convergence sense. To the best of our knowledge, this is the first result on the strong convergence rates of numerical methods for the stochastic Cahn--Hilliard equation driven by space-time white noise. This interpolation approach is also applied to the general noise and high dimension cases, and strong convergence rate results of the proposed scheme are given.
The motion of two contiguous incompressible and viscous fluids is described within the diffuse interface theory by the so-called Model H. The system consists of the Navier-Stokes equations, which are coupled with the Cahn-Hilliard equation associated to the Ginzburg-Landau free energy with physically relevant logarithmic potential. This model is studied in bounded smooth domain in R^d, d=2 and d=3, and is supplemented with a no-slip condition for the velocity, homogeneous Neumann boundary conditions for the order parameter and the chemical potential, and suitable initial conditions. We study uniqueness and regularity of weak and strong solutions. In a two-dimensional domain, we show the uniqueness of weak solutions and the existence and uniqueness of global strong solutions originating from an initial velocity u_0 in V, namely u_0 in H_0^1 such that div u_0=0. In addition, we prove further regularity properties and the validity of the instantaneous separation property. In a three-dimensional domain, we show the existence and uniqueness of local strong solutions with initial velocity u_0 in V.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا