ﻻ يوجد ملخص باللغة العربية
Eruptive events on the Sun have an impact on the immediate surroundings of the Earth. Through induction of electric currents, they also affect Earth-bound structures such as the electric power transmission networks. Inspired by recent studies we investigate the correlation between the disturbances recorded in 12 years in the maintenance logs of the Czech electric-power distributors with the geomagnetic activity represented by the K index. We find that in case of the datasets recording the disturbances on power lines at the high and very high voltage levels and disturbances on electrical substations, there is a statistically significant increase of anomaly rates in the periods of tens of days around maxima of geomagnetic activity compared to the adjacent minima of activity. There are hints that the disturbances are more pronounced shortly after the maxima than shortly before the maxima of activity. Our results provide indirect evidence that the geomagnetically induced currents may affect the occurrence rate of anomalies registered on power-grid equipment even in the mid-latitude country in the middle of Europe. A follow-up study that includes the modelling of geomagnetically induced currents is needed to confirm our findings.
Eruptive events of solar activity often trigger abrupt variations of the geomagnetic field. Through the induction of electric currents, human infrastructures are also affected, namely the equipment of electric power transmission networks. It was show
English: Solar eruptive events affect the close neighbourhood of the Earth. They also affect human infrastructure, power grids mainly, due to the induction of electrical currents. Only recently the attention was drawn not only to large flares, but al
Geomagnetically induced currents (GICs) are a well-known terrestrial space weather hazard. They occur in power transmission networks and are known to have adverse effects in both high and mid-latitude countries. Here, we study GICs in the Irish power
We use the am, an, as and the a-sigma geomagnetic indices to the explore a previously overlooked factor in magnetospheric electrodynamics, namely the inductive effect of diurnal motions of the Earths magnetic poles toward and away from the Sun caused
Power Grids and other delivery networks has been attracted some attention by the network literature last decades. Despite the Power Grids dynamics has been controlled by computer systems and human operators, the static features of this type of networ