ﻻ يوجد ملخص باللغة العربية
Question Answering (QA) is a challenging topic since it requires tackling the various difficulties of natural language understanding. Since evaluation is important not only for identifying the strong and weak points of the various techniques for QA, but also for facilitating the inception of new methods and techniques, in this paper we present a collection for evaluating QA methods over free text that we have created. Although it is a small collection, it contains cases of increasing difficulty, therefore it has an educational value and it can be used for rapid evaluation of QA systems.
Answering questions asked from instructional corpora such as E-manuals, recipe books, etc., has been far less studied than open-domain factoid context-based question answering. This can be primarily attributed to the absence of standard benchmark dat
Disfluencies is an under-studied topic in NLP, even though it is ubiquitous in human conversation. This is largely due to the lack of datasets containing disfluencies. In this paper, we present a new challenge question answering dataset, Disfl-QA, a
Every day, thousands of customers post questions on Amazon product pages. After some time, if they are fortunate, a knowledgeable customer might answer their question. Observing that many questions can be answered based upon the available product rev
Confidently making progress on multilingual modeling requires challenging, trustworthy evaluations. We present TyDi QA---a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. The languages of TyDi Q
Question answering (QA) models have shown rapid progress enabled by the availability of large, high-quality benchmark datasets. Such annotated datasets are difficult and costly to collect, and rarely exist in languages other than English, making trai