ترغب بنشر مسار تعليمي؟ اضغط هنا

Digital Electronics and Analog Photonics for Convolutional Neural Networks (DEAP-CNNs)

90   0   0.0 ( 0 )
 نشر من قبل Bhavin Shastri
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Convolutional Neural Networks (CNNs) are powerful and highly ubiquitous tools for extracting features from large datasets for applications such as computer vision and natural language processing. However, a convolution is a computationally expensive operation in digital electronics. In contrast, neuromorphic photonic systems, which have experienced a recent surge of interest over the last few years, propose higher bandwidth and energy efficiencies for neural network training and inference. Neuromorphic photonics exploits the advantages of optical electronics, including the ease of analog processing, and busing multiple signals on a single waveguide at the speed of light. Here, we propose a Digital Electronic and Analog Photonic (DEAP) CNN hardware architecture that has potential to be 2.8 to 14 times faster while maintaining the same power usage of current state-of-the-art GPUs.



قيم البحث

اقرأ أيضاً

Research in photonic computing has flourished due to the proliferation of optoelectronic components on photonic integration platforms. Photonic integrated circuits have enabled ultrafast artificial neural networks, providing a framework for a new cla ss of information processing machines. Algorithms running on such hardware have the potential to address the growing demand for machine learning and artificial intelligence, in areas such as medical diagnosis, telecommunications, and high-performance and scientific computing. In parallel, the development of neuromorphic electronics has highlighted challenges in that domain, in particular, related to processor latency. Neuromorphic photonics offers sub-nanosecond latencies, providing a complementary opportunity to extend the domain of artificial intelligence. Here, we review recent advances in integrated photonic neuromorphic systems, discuss current and future challenges, and outline the advances in science and technology needed to meet those challenges.
Here we introduce a new model of natural textures based on the feature spaces of convolutional neural networks optimised for object recognition. Samples from the model are of high perceptual quality demonstrating the generative power of neural networ ks trained in a purely discriminative fashion. Within the model, textures are represented by the correlations between feature maps in several layers of the network. We show that across layers the texture representations increasingly capture the statistical properties of natural images while making object information more and more explicit. The model provides a new tool to generate stimuli for neuroscience and might offer insights into the deep representations learned by convolutional neural networks.
113 - Jin Zheng , Qing Gao , Yanxuan Lv 2021
At present, there are a large number of quantum neural network models to deal with Euclidean spatial data, while little research have been conducted on non-Euclidean spatial data. In this paper, we propose a novel quantum graph convolutional neural n etwork (QGCN) model based on quantum parametric circuits and utilize the computing power of quantum systems to accomplish graph classification tasks in traditional machine learning. The proposed QGCN model has a similar architecture as the classical graph convolutional neural networks, which can illustrate the topology of the graph type data and efficiently learn the hidden layer representation of node features as well. Numerical simulation results on a graph dataset demonstrate that the proposed model can be effectively trained and has good performance in graph level classification tasks.
We study and analyze the fundamental aspects of noise propagation in recurrent as well as deep, multi-layer networks. The main focus of our study are neural networks in analogue hardware, yet the methodology provides insight for networks in general. The system under study consists of noisy linear nodes, and we investigate the signal-to-noise ratio at the networks outputs which is the upper limit to such a systems computing accuracy. We consider additive and multiplicative noise which can be purely local as well as correlated across populations of neurons. This covers the chief internal-perturbations of hardware networks and noise amplitudes were obtained from a physically implemented recurrent neural network and therefore correspond to a real-world system. Analytic solutions agree exceptionally well with numerical data, enabling clear identification of the most critical components and aspects for noise management. Focusing on linear nodes isolates the impact of network connections and allows us to derive strategies for mitigating noise. Our work is the starting point in addressing this aspect of analogue neural networks, and our results identify notoriously sensitive points while simultaneously highlighting the robustness of such computational systems.
75 - Matthew Z. Wong 2020
We present a high-speed, energy-efficient Convolutional Neural Network (CNN) architecture utilising the capabilities of a unique class of devices known as analog Focal Plane Sensor Processors (FPSP), in which the sensor and the processor are embedded together on the same silicon chip. Unlike traditional vision systems, where the sensor array sends collected data to a separate processor for processing, FPSPs allow data to be processed on the imaging device itself. This unique architecture enables ultra-fast image processing and high energy efficiency, at the expense of limited processing resources and approximate computations. In this work, we show how to convert standard CNNs to FPSP code, and demonstrate a method of training networks to increase their robustness to analog computation errors. Our proposed architecture, coined AnalogNet, reaches a testing accuracy of 96.9% on the MNIST handwritten digits recognition task, at a speed of 2260 FPS, for a cost of 0.7 mJ per frame.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا