ﻻ يوجد ملخص باللغة العربية
Convolutional Neural Networks (CNNs) are powerful and highly ubiquitous tools for extracting features from large datasets for applications such as computer vision and natural language processing. However, a convolution is a computationally expensive operation in digital electronics. In contrast, neuromorphic photonic systems, which have experienced a recent surge of interest over the last few years, propose higher bandwidth and energy efficiencies for neural network training and inference. Neuromorphic photonics exploits the advantages of optical electronics, including the ease of analog processing, and busing multiple signals on a single waveguide at the speed of light. Here, we propose a Digital Electronic and Analog Photonic (DEAP) CNN hardware architecture that has potential to be 2.8 to 14 times faster while maintaining the same power usage of current state-of-the-art GPUs.
Research in photonic computing has flourished due to the proliferation of optoelectronic components on photonic integration platforms. Photonic integrated circuits have enabled ultrafast artificial neural networks, providing a framework for a new cla
Here we introduce a new model of natural textures based on the feature spaces of convolutional neural networks optimised for object recognition. Samples from the model are of high perceptual quality demonstrating the generative power of neural networ
At present, there are a large number of quantum neural network models to deal with Euclidean spatial data, while little research have been conducted on non-Euclidean spatial data. In this paper, we propose a novel quantum graph convolutional neural n
We study and analyze the fundamental aspects of noise propagation in recurrent as well as deep, multi-layer networks. The main focus of our study are neural networks in analogue hardware, yet the methodology provides insight for networks in general.
We present a high-speed, energy-efficient Convolutional Neural Network (CNN) architecture utilising the capabilities of a unique class of devices known as analog Focal Plane Sensor Processors (FPSP), in which the sensor and the processor are embedded