ﻻ يوجد ملخص باللغة العربية
Variational representations of quantum states abound and have successfully been used to guess ground-state properties of quantum many-body systems. Some are based on partial physical insight (Jastrow, Gutzwiller projected, and fractional quantum Hall states, for instance), and others operate as a black box that may contain information about the underlying structure of entanglement and correlations (tensor networks, neural networks) and offer the advantage of a large set of variational parameters that can be efficiently optimized. However, using variational approaches to study excited states and, in particular, calculating the excitation spectrum, remains a challenge. We present a variational method to calculate the dynamical properties and spectral functions of quantum many-body systems in the frequency domain, where the Greens function of the problem is encoded in the form of a restricted Boltzmann machine (RBM). We introduce a natural gradient descent approach to solve linear systems of equations and use Monte Carlo to obtain the dynamical correlation function. In addition, we propose a strategy to regularize the results that improves the accuracy dramatically. As an illustration, we study the dynamical spin structure factor of the one dimensional $J_1-J_2$ Heisenberg model. The method is general and can be extended to other variational forms.
Computationally intractable tasks are often encountered in physics and optimization. Such tasks often comprise a cost function to be optimized over a so-called feasible set, which is specified by a set of constraints. This may yield, in general, to d
We study the problem of learning the Hamiltonian of a quantum many-body system given samples from its Gibbs (thermal) state. The classical analog of this problem, known as learning graphical models or Boltzmann machines, is a well-studied question in
Classical machine learning (ML) provides a potentially powerful approach to solving challenging quantum many-body problems in physics and chemistry. However, the advantages of ML over more traditional methods have not been firmly established. In this
In experimentally realistic situations, quantum systems are never perfectly isolated and the coupling to their environment needs to be taken into account. Often, the effect of the environment can be well approximated by a Markovian master equation. H
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instance