ﻻ يوجد ملخص باللغة العربية
Topological physics opens up a plethora of exciting phenomena allowing to engineer disorder-robust unidirectional flows of light. Recent advances in topological protection of electromagnetic waves suggest that even richer functionalities can be achieved by realizing topological states of quantum light. This area, however, remains largely uncharted due to the number of experimental challenges. Here, we take an alternative route and design a classical structure based on topolectrical circuits which serves as a simulator of a quantum-optical one-dimensional system featuring the topological state of two photons induced by the effective photon-photon interaction. Employing the correspondence between the eigenstates of the original problem and circuit modes, we use the designed simulator to extract the frequencies of bulk and edge two-photon bound states and evaluate the topological invariant directly from the measurements. Furthermore, we perform a reconstruction of the two-photon probability distribution for the topological state associated with one of the circuit eigenmodes.
Electromagnetic signals are always composed of photons, though in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photons energy is usually not evident. However, by coupling a superconductin
Recent theoretical studies have extended the Berry phase framework to account for higher electric multipole moments, quadrupole and octupole topological phases have been proposed. Although the two-dimensional quantized quadrupole insulators have been
We constructed an electrical circuit to realize a modified Haldane lattice exhibiting the unusual phenomenon of antichiral edge states. The circuit consists of a network of inductors and capacitors with interconnections reproducing the effects of a m
Recently, the theory of quantized dipole polarization has been extended to account for electric multipole moments, giving rise to the discovery of multipole topological insulators (TIs). Both two-dimensional (2D) quadrupole and three-dimensional (3D)
A system is non-Hermitian when it exchanges energy with its environment and non-reciprocal when it behaves differently upon the interchange of input and response. Within the field of metamaterial research on synthetic topological matter, the skin eff