ﻻ يوجد ملخص باللغة العربية
Nuclear star clusters (NSCs) are found in at least 70% of all galaxies, but their formation path is still unclear. In the most common scenarios, NSCs form in-situ from the galaxys central gas reservoir, through merging of globular clusters (GCs), or through a combination of the two. As the scenarios pose different expectations for angular momentum and stellar population properties of the NSC in comparison to the host galaxy and the GC system, it is necessary to characterise the stellar light, NSC and GCs simultaneously. The large NSC (r$_rm{eff} = 66$ pc) and rich GC system of the early-type Fornax cluster galaxy FCC47 (NGC1336) render this galaxy an ideal laboratory to constrain NSC formation. Using MUSE science verification data assisted by adaptive optics, we obtained maps for the stellar kinematics and for stellar-population properties of FCC47. We extracted the spectra of the central NSC and determined line-of-sight velocities of 24 GCs and metallicities of five. FCC47 shows two decoupled components (KDCs): a rotating disk and the NSC. Our orbit-based dynamical Schwarzschild model revealed that the NSC is a distinct kinematic feature and it constitutes the peak of metallicity and old ages in the galaxy. The main body consists of two counter-rotating populations and is dominated by a more metal-poor population. The GC system is bimodal with a dominant metal-poor population and the total GC system mass is $sim 17%$ of the NSC mass ($sim$ 7 $times$ $10^8 M_odot$). The rotation, high metallicity and high mass of the NSC cannot be uniquely explained by GC-inspiral and most likely requires additional, but quickly quenched, in-situ formation. The presence of two KDCs most probably are evidence of a major merger that has altered the structure of FCC47 significantly, indicating the important role of galaxy mergers in forming the complex kinematics in the galaxy-NSC system.
We identify a total of 120 early-type Brightest Cluster Galaxies (BCGs) at 0.1<z<0.4 in two recent large cluster catalogues selected from the Sloan Digital Sky Survey (SDSS). They are selected with strong emission lines in their optical spectra, with
We use very high-S/N stacked spectra of $sim$29,000 nearby quiescent early-type galaxies (ETGs) from the Sloan Digital Sky Survey (SDSS) to investigate variations in their star formation histories (SFHs) with environment at fixed position along and p
Low-redshift strong-lensing galaxies can provide robust measurements of the stellar mass-to-light ratios in early-type galaxies (ETG), and hence constrain variations in the stellar initial mass function (IMF). At present, only a few such systems are
NGC 4203 is a nearby early-type galaxy surrounded by a very large, low-column-density HI disc. In this paper we study the star formation efficiency in the gas disc of NGC 4203 by using the UV, deep optical imaging and infrared data. We confirm that t
We present spatially resolved imaging and integral field spectroscopy data for 450 cool giant stars within 1,pc from Sgr,A*. We use the prominent CO bandheads to derive effective temperatures of individual giants. Additionally we present the deepest