ﻻ يوجد ملخص باللغة العربية
Cosmological studies of large-scale structure have relied on two-point statistics, not fully exploiting the rich structure of the cosmic web. In this paper we show how to capture some of this cosmic web information by using the minimum spanning tree (MST), for the first time using it to estimate cosmological parameters in simulations. Discrete tracers of dark matter such as galaxies, $N$-body particles or haloes are used as nodes to construct a unique graph, the MST, that traces skeletal structure. We study the dependence of the MST on cosmological parameters using haloes from a suite of COLA simulations with a box size of $250 h^{-1}{rm Mpc}$, varying the amplitude of scalar fluctuations $left(A_{rm s}right)$, matter density $left(Omega_{rm m}right)$, and neutrino mass $left(sum m_{ u}right)$. The power spectrum $P$ and bispectrum $B$ are measured for wavenumbers between $0.125$ and $0.5$ $h{rm Mpc}^{-1}$, while a corresponding lower cut of $sim12.6$ $h^{-1}{rm Mpc}$ is applied to the MST. The constraints from the individual methods are fairly similar but when combined we see improved $1sigma$ constraints of $sim 17%$ ($sim 12%$) on $Omega_{rm m}$ and $sim 12%$ ($sim 10%$) on $A_{rm s}$ with respect to $P$ ($P+B$) thus showing the MST is providing additional information. The MST can be applied to current and future spectroscopic surveys (BOSS, DESI, Euclid, PSF, WFIRST, and 4MOST) in 3D and photometric surveys (DES and LSST) in tomographic shells to constrain parameters and/or test systematics.
The minimum spanning tree clustering algorithm is capable of detecting clusters with irregular boundaries. In this paper we propose two minimum spanning trees based clustering algorithm. The first algorithm produces k clusters with center and guarant
The aims are to investigate the clustering of the far-infrared sources from the Herschel infrared Galactic Plane Survey (Hi-GAL) in the Galactic longitude range of -71 to 67 deg. These clumps, and their spatial distribution, are an imprint of the ori
Some beyond $Lambda$CDM cosmological models have dark-sector energy densities that suffer phase transitions. Fluctuations entering the horizon during such a transition can receive enhancements that ultimately show up as a distinctive bump in the powe
We present a novel self-stabilizing algorithm for minimum spanning tree (MST) construction. The space complexity of our solution is $O(log^2n)$ bits and it converges in $O(n^2)$ rounds. Thus, this algorithm improves the convergence time of all previo
In a geometric network G = (S, E), the graph distance between two vertices u, v in S is the length of the shortest path in G connecting u to v. The dilation of G is the maximum factor by which the graph distance of a pair of vertices differs from the