ﻻ يوجد ملخص باللغة العربية
We study the dynamic properties of a thermal autonomous machine made up of two quantum Brownian particles, each of which is in contact with an environment at different temperature and moves on a periodic sinusoidal track. When such tracks are shifted, the center of mass of the system exhibits a non-vanishing velocity, for which we provide an exact expression in the limit of small track undulations. We discuss the role of the broken spatial symmetry in the emergence of directed motion in thermal machines. We then consider the case in which external deterministic forces are applied to the system, and characterize its steady state velocity. If the applied external force opposes the system motion, work can be extracted from such a steady state thermal machine, without any external cyclic protocol. When the two particles are not interacting, our results reduce to those of refs. [1,2] for a single particle moving in a periodic tilted potential. We finally use our results for the motor velocity to check the validity of the quantum molecular dynamics algorithm in the non--linear, non--equilibrium regime.
We consider a minimal model of a quantum rotator composed of a single particle confined in an harmonic potential and driven by two temperature-biased heat reservoirs. In the case the particle potential is rendered asymmetric and rotated an angle, a f
The characterization and control of quantum effects in the performance of thermodynamic tasks may open new avenues for small thermal machines working in the nanoscale. We study the impact of coherence in the energy basis in the operation of a small t
The seminal work by Sadi Carnot in the early nineteenth century provided the blueprint of a reversible heat engine and the celebrated second law of thermodynamics eventually followed. Almost two centuries later, the quest to formulate a quantum theor
We study thermal states of strongly interacting quantum spin chains and prove that those can be represented in terms of convex combinations of matrix product states. Apart from revealing new features of the entanglement structure of Gibbs states our
We study the quantum fidelity approach to characterize thermal phase transitions. Specifically, we focus on the mixed-state fidelity induced by a perturbation in temperature. We consider the behavior of fidelity in two types of second-order thermal p