ﻻ يوجد ملخص باللغة العربية
We study network coordination problems, as captured by the setting of generalized network design (Emek et al., STOC 2018), in the face of uncertainty resulting from partial information that the network users hold regarding the actions of their peers. This uncertainty is formalized using Alon et al.s Bayesian ignorance framework (TCS 2012). While the approach of Alon et al. is purely combinatorial, the current paper takes into account computational considerations: Our main technical contribution is the development of (strongly) polynomial time algorithms for local decision making in the face of Bayesian uncertainty.
The cost-sharing connection game is a variant of routing games on a network. In this model, given a directed graph with edge-costs and edge-capacities, each agent wants to construct a path from a source to a sink with low cost. The cost of each edge
We consider a ubiquitous scenario in the Internet economy when individual decision-makers (henceforth, agents) both produce and consume information as they make strategic choices in an uncertain environment. This creates a three-way tradeoff between
We pose and study a fundamental algorithmic problem which we term mixture selection, arising as a building block in a number of game-theoretic applications: Given a function $g$ from the $n$-dimensional hypercube to the bounded interval $[-1,1]$, and
We propose a truthful-in-expectation, $(1-1/e)$-approximation mechanism for a strategic variant of the generalized assignment problem (GAP). In GAP, a set of items has to be optimally assigned to a set of bins without exceeding the capacity of any si
We study online pricing algorithms for the Bayesian selection problem with production constraints and its generalization to the laminar matroid Bayesian online selection problem. Consider a firm producing (or receiving) multiple copies of different p