ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperuniform vortex patterns at the surface of type-II superconductors

132   0   0.0 ( 0 )
 نشر من قبل Yanina Fasano Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A many-particle system must posses long-range interactions in order to be hyperuniform at thermal equilibrium. Hydrodynamic arguments and numerical simulations show, nevertheless, that a three-dimensional elastic-line array with short-ranged repulsive interactions, such as vortex matter in a type-II superconductor, forms at equilibrium a class-II hyperuniform two-dimensional point pattern for any constant-$z$ cross section. In this case, density fluctuations vanish isotropically as $sim q^{alpha}$ at small wave-vectors $q$, with $alpha=1$. This prediction includes the solid and liquid vortex phases in the ideal clean case, and the liquid in presence of weak uncorrelated disorder. We also show that the three-dimensional Bragg glass phase is marginally hyperuniform, while the Bose glass and the liquid phase with correlated disorder are expected to be non-hyperuniform at equilibrium. Furthermore, we compare these predictions with experimental results on the large-wavelength vortex density fluctuations of magnetically decorated vortex structures nucleated in pristine, electron-irradiated and heavy-ion irradiated superconducting BiSCCO samples in the mixed state. For most cases we find hyperuniform two-dimensional point patterns at the superconductor surface with an effective exponent $alpha_{text{eff}} approx 1$. We interpret these results in terms of a large-scale memory of the high-temperature line-liquid phase retained in the glassy dynamics when field-cooling the vortex structures into the solid phase. We also discuss the crossovers expected from the dispersivity of the elastic constants at intermediate length-scales, and the lack of hyperuniformity in the $x,-y$ plane for lengths $q^{-1}$ larger than the sample thickness due to finite-size effects in the $z$-direction.



قيم البحث

اقرأ أيضاً

We demonstrate that a highly frustrated anisotropic Josephson junction array(JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings al ong the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dynamic response of the system against shear, i. e. injection of external electric current at zero temperature. Current-voltage curves at various strength of the anisotropy exhibit universal scaling features around the jamming point much as do the flow curves in granular rheology, shear-stress vs shear-rate. It turns out that at zero temperature the jamming transition occurs right at the isotropic coupling and anisotropic JJA behaves as an exotic fragile vortex matter : it behaves as superconductor (vortex glass) into one direction while normal conductor (vortex liquid) into the other direction even at zero temperature. Furthermore we find a variant of the theoretical model for the anisotropic JJA quantitatively reproduces universal master flow-curves of the granular systems. Our results suggest an unexpected common paradigm stretching over seemingly unrelated fields - the rheology of soft materials and superconductivity.
257 - T. Nattermann , S. Scheidl 2000
A review is given on the theory of vortex-glass phases in impure type-II superconductors in an external field. We begin with a brief discussion of the effects of thermal fluctuations on the spontaneously broken U(1) and translation symmetries, on the global phase diagram and on the critical behaviour. Introducing disorder we restrict ourselves to the experimentally most relevant case of weak uncorrelated randomness which is known to destroy the long-ranged translational order of the Abrikosov lattice in three dimensions. Elucidating possible residual glassy ordered phases, we distinguish betwee positional and phase-coherent vortex glasses. The discussion of elastic vortex glasses, in two and three dimensions occupy the main part of our review. In particular, in three dimensions there exists an elastic vortex-glass phase which still shows quasi-long-range translational order: the `Bragg glass. It is shown that this phase is stable with respect to the formation of dislocations for intermediate fields. Preliminary results suggest that the Bragg-glass phase may not show phase-coherent vortex-glass order. The latter is expected to occur in systems with weak disorder only in higher dimensions. We further demonstrate that the linear resistivity vanishes in the vortex-glass phase. The vortex-glass transition is studied in detail for a superconducting film in a parallel field. Finally, we review some recent developments concerning driven vortex-line lattices moving in a random environment.
114 - T. J. Bullard 2005
In order to characterize flux flow through disordered type-II superconductors, we investigate the effects of columnar and point defects on the vortex velocity / voltage power spectrum in the driven non-equilibrium steady state. We employ three-dimens ional Metropolis Monte Carlo simulations to measure relevant physical observables including the force-velocity / current-voltage (I-V) characteristics, vortex spatial arrangement and structure factor, and mean flux line radius of gyration. Our simulation results compare well to earlier findings and physical intuition. We focus specifically on the voltage noise power spectra in conjunction with the vortex structure factor in the presence of weak columnar and point pinning centers. We investigate the vortex washboard noise peak and associated higher harmonics, and show that the intensity ratios of the washboard harmonics are determined by the strength of the material defects rather than the type of pins present. Through varying columnar defect lengths and pinning strengths as well as magnetic flux density we further explore the effect of the material defects on vortex transport. It is demonstrated that the radius of gyration displays quantitatively unique features that depend characteristically on the type of material defects present in the sample.
Disorder in Weyl semimetals and superconductors is surprisingly subtle, attracting attention and competing theories in recent years. In this brief review, we discuss the current theoretical understanding of the effects of short-ranged, quenched disor der on the low energy-properties of three-dimensional, topological Weyl semimetals and superconductors. We focus on the role of non-perturbative rare region effects on destabilizing the semimetal phase and rounding the expected semimetal-to-diffusive metal transition into a cross over. Furthermore, the consequences of disorder on the resulting nature of excitations, transport, and topology are reviewed. New results on a bipartite random hopping model are presented that confirm previous results in a $p+ip$ Weyl superconductor, demonstrating that particle-hole symmetry is insufficient to help stabilize the Weyl semimetal phase in the presence of disorder. The nature of the avoided transition in a model for a single Weyl cone in the continuum is discussed. We close with a discussion of open questions and future directions.
87 - D. E. Feldman 2000
The paper contains a rigorous proof of the absence of quasi-long-range order in the random-field O(N) model for strong disorder in the space of an arbitrary dimensionality. This result implies that quasi-long-range order inherent to the Bragg glass p hase of the vortex system in disordered superconductors is absent as the disorder or external magnetic field is strong.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا