ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-Low Surface Resistance via Vacuum Heat Treatment of Superconducting Radiofrequency Cavities

67   0   0.0 ( 0 )
 نشر من قبل Sam Posen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on an effort to improve the performance of superconducting radiofrequency cavities by the use of heat treatment in a temperature range sufficient to dissociate the natural surface oxide. We find that the residual resistance is significantly decreased, and we find an unexpected reduction in the BCS resistance. Together these result in extremely high quality factor values at relatively large accelerating fields Eacc ~20 MV/m: Q0 of 3-4x10^11 at <1.5 K and Q0 ~5x10^10 at 2.0 K. In one cavity, measurements of surface resistance versus temperature showed an extremely small residual resistance of just 0.63+/-0.06 nOhms at 16 MV/m. SIMS measurements confirm that the oxide was significantly dissociated, but they also show the presence of nitrogen after heat treatment. We also present studies of surface oxidation via exposure to air and to water, as well as the effects of very light surface removal via HF rinse. The possibilities for applications and the planned future development are discussed.

قيم البحث

اقرأ أيضاً

The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a centre-of-mass energy of 500 GeV, an accelerating field of 23.4 MV/m is required which is reliably achieved wit h a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper, results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity.
128 - S. Posen , J. Lee , D.N. Seidman 2020
Nb3Sn is a promising next-generation material for superconducting radiofrequency cavities, with significant potential for both large scale and compact accelerator applications. However, so far, Nb3Sn cavities have been limited to cw accelerating fiel ds <18 MV/m. In this paper, new results are presented with significantly higher fields, as high as 24 MV/m in single cell cavities. Results are also presented from the first ever Nb3Sn-coated 1.3 GHz 9-cell cavity, a full-scale demonstration on the cavity type used in production for the European XFEL and LCLS-II. Results are presented together with heat dissipation curves to emphasize the potential for industrial accelerator applications using cryocooler-based cooling systems. The cavities studied have an atypical shiny visual appearance, and microscopy studies of witness samples reveal significantly reduced surface roughness and smaller film thickness compared to typical Nb3Sn films for superconducting cavities. Possible mechanisms for increased maximum field are discussed as well as implications for physics of RF superconductivity in the low coherence length regime. Outlook for continued development is presented.
As a result of a collaboration between Jefferson Lab and niobium manufacturer CBMM, ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large grain high puri ty niobium was fabricated and successfully tested at Jefferson Lab in 2004. This pioneering work triggered research activities in other SRF laboratories around the world. Large grain niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this material. Most of the original expectations for this material of being less costly and allowing less expensive fabrication and treatment procedures at the same performance levels in cavities have been met. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown the performances comparable to the best cavities made from standard poly-crystalline niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc = 45.6 MV/m. Recently- at JLab- by using a new furnace treatment procedure a single cell cavity made of ingot niobium performed at a remarkably high Q0-value (~5x10^10) at an accelerating gradient of ~20 MV/m, at 2K. Such performance levels push the state-of-the art of SRF technology to new limits and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and attempts to make a case for this material being the choice for future accelerators.
We report a strong effect of the cooling dynamics through $T_mathrm{c}$ on the amount of trapped external magnetic flux in superconducting niobium cavities. The effect is similar for fine grain and single crystal niobium and all surface treatments in cluding electropolishing with and without 120$^circ$C baking and nitrogen doping. Direct magnetic field measurements on the cavity walls show that the effect stems from changes in the flux trapping efficiency: slow cooling leads to almost complete flux trapping and higher residual resistance while fast cooling leads to the much more efficient flux expulsion and lower residual resistance.
73 - G. Ciovati , P. Dhakal , 2014
In a recent comment [arXiv:1405.2978v1 (2014)] Romanenko and Grassellino made unsubstantiated statements about our work [Appl. Phys. Lett. 104, 092601 (2014)] and ascribed to us wrong points which we had not made. Here we show that the claims of Roma nenko and Grassellino are based on misinterpretation of our Letter and inadequate data analysis in their earlier work [*]. [*] A. Romanenko and A. Grassellino, Appl. Phys. Lett. 102, 252603 (2013)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا