ترغب بنشر مسار تعليمي؟ اضغط هنا

Proposal for the validation of Monte Carlo implementations of the standard model effective field theory

130   0   0.0 ( 0 )
 نشر من قبل Gauthier Durieux
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Gauthier Durieux




اسأل ChatGPT حول البحث

We propose a procedure to cross-validate Monte Carlo implementations of the standard model effective field theory. It is based on the numerical comparison of squared amplitudes computed at specific phase-space and parameter points in pairs of implementations. Interactions are fully linearised in the effective field theory expansion. The squares of linear effective field theory amplitudes and their interference with standard-model contributions are compared separately. Such pairwise comparisons are primarily performed at tree level and a possible extension to the one-loop level is also briefly considered. We list the current standard model effective field theory implementations and the comparisons performed to date.



قيم البحث

اقرأ أيضاً

We present a novel framework for carrying out global analyses of the Standard Model Effective Field Theory (SMEFT) at dimension-six: SMEFiT. This approach is based on the Monte Carlo replica method for deriving a faithful estimate of the experimental and theoretical uncertainties and enables one to construct the probability distribution in the space of the SMEFT degrees of freedom. As a proof of concept of the SMEFiT methodology, we present a first study of the constraints on the SMEFT provided by top quark production measurements from the LHC. Our analysis includes more than 30 independent measurements from 10 different processes at 8 and 13 TeV such as inclusive top-quark pair and single-top production and the associated production of top quarks with weak vector bosons and the Higgs boson. State-of-the-art theoretical calculations are adopted both for the Standard Model and for the SMEFT contributions, where in the latter case NLO QCD corrections are included for the majority of processes. We derive bounds for the 34 degrees of freedom relevant for the interpretation of the LHC top quark data and compare these bounds with previously reported constraints. Our study illustrates the significant potential of LHC precision measurements to constrain physics beyond the Standard Model in a model-independent way, and paves the way towards a global analysis of the SMEFT.
We develop the geometric formulation of the Standard Model Effective Field Theory (SMEFT). Using this approach we derive all-orders results in the $sqrt{2 langle H^dagger H rangle}/Lambda$ expansion relevant for studies of electroweak precision and Higgs data.
74 - Di Zhang , Shun Zhou 2021
In this paper, we accomplish the complete one-loop matching of the type-I seesaw model onto the Standard Model Effective Field Theory (SMEFT), by integrating out three heavy Majorana neutrinos with the functional approach. It turns out that only 31 d imension-six operators (barring flavor structures and Hermitian conjugates) in the Warsaw basis of the SMEFT can be obtained, and most of them appear at the one-loop level. The Wilson coefficients of these 31 dimension-six operators are computed up to $mathcal{O}left( M^{-2}right)$ with $M$ being the mass scale of heavy Majorana neutrinos. As the effects of heavy Majorana neutrinos are encoded in the Wilson coefficients of these higher-dimensional operators, a complete one-loop matching is useful to explore the low-energy phenomenological consequences of the type-I seesaw model. In addition, the threshold corrections to the couplings in the Standard Model and to the coefficient of the dimension-five operator are also discussed.
173 - Brian Henning , Xiaochuan Lu , 2014
We present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurem ents as constraints on a given UV model. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. This covariant derivative expansion method dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UV models. A few general aspects of RG running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. Many results and tools which should prove useful to those wishing to use the SM EFT are detailed in several appendices.
If the Standard Model is understood as the first term of an effective field theory, the anomaly-cancellation conditions have to be worked out and fulfilled order by order in the effective field-theory expansion. We bring attention to this issue and s tudy in detail a subset of the anomalies of the effective field theories at the electroweak scale. The end result is a set of sum rules for the operator coefficients. These conditions, which are necessary for the internal consistency of the theory, lead to a number of phenomenological consequences when implemented in analyses of experimental data. In particular, they not only decrease the number of free parameters in different physical processes but have the potential to relate processes with different flavor content. Conversely, a violation of these conditions would necessarily imply the existence of undetected non-decoupling new physics associated with the electroweak energy scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا