ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulence Dynamo in Galaxy Clusters

311   0   0.0 ( 0 )
 نشر من قبل Dongsu Ryu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Soonyoung Roh




اسأل ChatGPT حول البحث

The existence of microgauss magnetic fields in galaxy clusters have been established through observations of synchrotron radiation and Faraday rotation. They are conjectured to be generated via small-scale dynamo by turbulent flow motions in the intracluster medium (ICM). Some of giant radio relics, on the other hand, show the structures of synchrotron polarization vectors, organized over the scales of $sim$ Mpc, challenging the turbulence origin of cluster magnetic fields. Unlike turbulence in the interstellar medium, turbulence in the ICM is subsonic. And it is driven sporadically in highly stratified backgrounds, when major mergers occur during the hierarchical formation of clusters. To investigate quantitatively the characteristics of turbulence dynamo in such ICM environment, we performed a set of turbulence simulations using a high-order-accurate, magnetohydrodynamic (MHD) code. We find that turbulence dynamo could generate the cluster magnetic fields up to the observed level from the primordial seed fields of $10^{-15}$ G or so within the age of the universe, if the MHD description of the ICM could be extended down to $sim$ kpc scales. However, highly organized structures of polarization vectors, such as those observed in the Sausage relic, are difficult to be reproduced by the shock compression of turbulence-generated magnetic fields. This implies that the modeling of giant radio relics may require the pre-existing magnetic fields organized over $sim$ Mpc scales.

قيم البحث

اقرأ أيضاً

We present results from the first 3D kinetic numerical simulation of magnetorotational turbulence and dynamo, using the local shearing-box model of a collisionless accretion disc. The kinetic magnetorotational instability grows from a subthermal magn etic field having zero net flux over the computational domain to generate self-sustained turbulence and outward angular-momentum transport. Significant Maxwell and Reynolds stresses are accompanied by comparable viscous stresses produced by field-aligned ion pressure anisotropy, which is regulated primarily by the mirror and ion-cyclotron instabilities through particle trapping and pitch-angle scattering. The latter endow the plasma with an effective viscosity that is biased with respect to the magnetic-field direction and spatio-temporally variable. Energy spectra suggest an Alfven-wave cascade at large scales and a kinetic-Alfven-wave cascade at small scales, with strong small-scale density fluctuations and weak non-axisymmetric density waves. Ions undergo non-thermal particle acceleration, their distribution accurately described by a kappa distribution. These results have implications for the properties of low-collisionality accretion flows, such as that near the black hole at the Galactic center.
Supernovae are the dominant energy source for driving turbulence within the interstellar plasma. Until recently, their effects on magnetic field amplification in disk galaxies remained a matter of speculation. By means of self-consistent simulations of supernova-driven turbulence, we find an exponential amplification of the mean magnetic field on timescales of a few hundred million years. The robustness of the observed fast dynamo is checked at different magnetic Reynolds numbers, and we find sustained dynamo action at moderate Rm. This indicates that the mechanism might indeed be of relevance for the real ISM. Sensing the flow via passive tracer fields, we infer that SNe produce a turbulent alpha effect which is consistent with the predictions of quasilinear theory. To lay a foundation for global mean-field models, we aim to explore the scaling of the dynamo tensors with respect to the key parameters of our simulations. Here we give a first account on the variation with the supernova rate.
Several physical processes and formation events are expected in cluster outskirts, a vast region up to now essentially not covered by observations. The recent Suzaku (X-ray) and Planck (Sunayev-Zeldovich effect) observations out to the virial radius have highlighted in these peripheral regions a rather sharp decline of the intracluster gas temperature, an entropy flattening in contrast with the theoretically expected power law increase, the break of the hydrostatic equilibrium even in some relaxed clusters, a derived gas mass fraction above the cosmic value measured from several CMB experiments, and a total X-ray mass lower than the weak lensing mass determinations. Here we present the analysis of four clusters (A1795, A2029, A2204 and A133) with the SuperModel that includes a nonthermal pressure component due to turbulence to sustain the hydrostatic equilibrium also in the cluster outskirts. In such way we obtain a correct determination of the total X-ray mass and of the gas mass fraction; this in turn allows to determine the level of the gas clumping that can affect the shape of the entropy profiles reported by the Suzaku observations. Our conclusion is that the role of the gas clumping is very marginal and that the observed entropy flattening is due to the rapid decrement of the temperature in the cluster outskirts caused by non gravitational effects. Moreover, we show that the X-ray/SZ joint analysis from ROSAT and Planck data, as performed in some recent investigations, is inadequate to discriminate between a power law increase and a flattening of the entropy.
Recent cosmological simulations have shown that turbulence should be generally prevailing in clusters because clusters are continuously growing through matter accretion. Using one-dimensional hydrodynamic simulations, we study the heating of cool-cor e clusters by the ubiquitous turbulence as well as feedback from the central active galactic nuclei (AGNs) for a wide range of cluster and turbulence parameters, focusing on the global stability of the core. We find that the AGN shows intermittent activities in the presence of moderate turbulence similar to the one observed with Hitomi. The cluster core maintains a quasi-equilibrium state for most of the time because the heating through turbulent diffusion is nearly balanced with radiative cooling. The balance is gradually lost because of slight dominance of the radiative cooling, and the AGN is ignited by increased gas inflow. Finally, when the AGN bursts, the core is heated almost instantaneously. Thanks to the pre-existing turbulence, the heated gas is distributed throughout the core without becoming globally unstable and causing catastrophic cooling, and the core recovers the quasi-equilibrium state. The AGN bursts can be stronger in lower-mass clusters. Predictions of our model can be easily checked with future X-ray missions like XRISM and Athena.
66 - T.A. Ensslin , C. Vogt 2005
We argue that the recently reported Kolmogorov-like magnetic turbulence spectrum in the cool core of the Hydra A galaxy cluster can be understood by kinetic energy injection by active galaxies that drives a turbulent non-helical magnetic dynamo into its saturated state. Although dramatic differences exist between small-scale dynamo scenarios, their saturated state is expected to be similar, as we show for three scenarios: the flux rope dynamo, the fluctuation dynamo, and the explosive dynamo. Based on those scenarios, we develop an analytical model of the hydrodynamic and magnetic turbulence in cool cores. The model implies magnetic field strengths that fit well with Faraday rotation measurements and minimum energy estimates for the sample of cool core clusters having such data available. Predictions for magnetic fields in clusters for which the appropriate observational information is still missing, and for yet unobserved quantities like the hydrodynamical turbulence velocity and characteristic length-scale are provided. The underlying dynamo models suggest magnetic intermittency and possibly a large-scale hydrodynamic viscosity. We conclude that the success of the model to explain the field strength in cool core clusters indicates that in general cluster magnetic fields directly reflect hydrodynamical turbulence, also in clusters without cool cores.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا