ﻻ يوجد ملخص باللغة العربية
We show that, in four-dimensional spacetimes with an arbitrary Einstein metric, with and without a cosmological constant, perturbative dynamical degrees of freedom in generic quadratic-curvature gravity can be decoupled into massless and massive parts. The massive part has the structure identical to, modulo the over-all sign, the non-Fierz-Pauli-type massive gravity, and a further decomposition into the spin-2 and spin-0 sectors can be done. The equivalence at the level of equations of motion allows us to translate various observational bounds on the mass of extra fields into constraints on the coupling constants in quadratic curvature gravity. We find that the Weyl-squared term is confronting two apparently contradicting constraints on massive spin-2 fields from the inverse-square law experiments and observations of spinning black holes.
Ghost-free bimetric gravity is an extension of general relativity, featuring a massive spin-2 field coupled to gravity. We parameterize the theory with a set of observables having specific physical interpretations. For the background cosmology and th
Ghost-free bimetric gravity is a theory of two interacting spin-2 fields, one massless and one massive, in addition to the standard matter particles and fields, thereby generalizing Einsteins theory of general relativity. To parameterize the theory,
Ghost-free bimetric theory describes two nonlinearly interacting spin-2 fields, one massive and one massless, thus extending general relativity. We confront bimetric theory with observations of Supernovae type 1a, Baryon Acoustic Oscillations and the
We consider the weak field limit of gravity in the vierbein-Einstein-Palatini formalism, find the action and the equations for perturbations around an arbitrary background, and compare them with the usual metric perturbation equations. We also write
Recently, Kenna-Allison et.al. claimed that bimetric gravity cannot give rise to a viable cosmological expansion history while at the same time being compatible with local gravity tests. In this note we review that claim and combine various results f