ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Fierz-Pauli bimetric theory from quadratic curvature gravity on Einstein manifolds

71   0   0.0 ( 0 )
 نشر من قبل Yuki Niiyama
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that, in four-dimensional spacetimes with an arbitrary Einstein metric, with and without a cosmological constant, perturbative dynamical degrees of freedom in generic quadratic-curvature gravity can be decoupled into massless and massive parts. The massive part has the structure identical to, modulo the over-all sign, the non-Fierz-Pauli-type massive gravity, and a further decomposition into the spin-2 and spin-0 sectors can be done. The equivalence at the level of equations of motion allows us to translate various observational bounds on the mass of extra fields into constraints on the coupling constants in quadratic curvature gravity. We find that the Weyl-squared term is confronting two apparently contradicting constraints on massive spin-2 fields from the inverse-square law experiments and observations of spinning black holes.



قيم البحث

اقرأ أيضاً

Ghost-free bimetric gravity is an extension of general relativity, featuring a massive spin-2 field coupled to gravity. We parameterize the theory with a set of observables having specific physical interpretations. For the background cosmology and th e static, spherically symmetric solutions (for example approximating the gravitational potential of the solar system), there are four directions in the parameter space in which general relativity is approached. Requiring that there is a working screening mechanism and a nonsingular evolution of the Universe, we place analytical constraints on the parameter space which rule out many of the models studied in the literature. Cosmological solutions where the accelerated expansion of the Universe is explained by the dynamical interaction of the massive spin-2 field rather than by a cosmological constant, are still viable.
Ghost-free bimetric gravity is a theory of two interacting spin-2 fields, one massless and one massive, in addition to the standard matter particles and fields, thereby generalizing Einsteins theory of general relativity. To parameterize the theory, we use five observables with specific physical interpretations. We present, for the first time, observational constraints on these parameters that: (i) apply to the full theory, (ii) are consistent with a working screening mechanism (i.e., restoring general relativity locally), (iii) exhibit a continuous, real-valued background cosmology (without the Higuchi ghost). For the cosmological constraints, we use data sets from the cosmic microwave background, baryon acoustic oscillations, and type Ia supernovae. Bimetric cosmology provides a good fit to data even for large values of the mixing angle between the massless and massive gravitons. Interestingly, the best-fit model is a self-accelerating solution where the accelerated expansion is due to the dynamical massive spin-2 field, without a cosmological constant. Due to the screening mechanism, the models are consistent with local tests of gravity such as solar system tests and gravitational lensing by galaxies. We also comment on the possibility of alleviating the Hubble tension with this theory.
Ghost-free bimetric theory describes two nonlinearly interacting spin-2 fields, one massive and one massless, thus extending general relativity. We confront bimetric theory with observations of Supernovae type 1a, Baryon Acoustic Oscillations and the Cosmic Microwave Background in a statistical analysis, utilising the recently proposed physical parametrisation. This directly constrains the physical parameters of the theory, such as the mass of the spin-2 field and its coupling to matter. We find that all models under consideration are in agreement with the data. Next, we compare these results to bounds from local tests of gravity. Our analysis reveals that all two- and three-parameter models are observationally consistent with both cosmological and local tests of gravity. The minimal bimetric model (only $beta_1$) is ruled out by our combined analysis.
We consider the weak field limit of gravity in the vierbein-Einstein-Palatini formalism, find the action and the equations for perturbations around an arbitrary background, and compare them with the usual metric perturbation equations. We also write the Fierz-Pauli equations for massive gravitons on an arbitrary curved background in this formalism.
Recently, Kenna-Allison et.al. claimed that bimetric gravity cannot give rise to a viable cosmological expansion history while at the same time being compatible with local gravity tests. In this note we review that claim and combine various results f rom the literature to provide several simple counter examples. We conclude that the results of Kenna-Allison et.al. cannot hold in general.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا