ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant shortcuts for adiabatic rapid passage with only $z$-field control

96   0   0.0 ( 0 )
 نشر من قبل Dionisis Stefanatos
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we derive novel ultrafast shortcuts for adiabatic rapid passage for a qubit where the only control variable is the longitudinal $z$-field, while the transverse $x$-field remains constant. This restrictive framework is pertinent to some important tasks in quantum computing, for example the design of a high fidelity controlled-phase gate can be mapped to the adiabatic quantum control of such a qubit. We study this problem in the adiabatic reference frame and with appropriately rescaled time, using as control input the derivative of the total field polar angle (with respect to rescaled time). We first show that a constant pulse can achieve perfect adiabatic rapid passage at only specific times, corresponding to resonant shortcuts to adiabaticity. We next show that, by using on-off-on-...-on-off-on pulse-sequences with appropriate characteristics (amplitude, timing, and number of pulses), a perfect fidelity can be obtained for every duration larger than the limit $pi/Omega$, where $Omega$ is the constant transverse $x$-field. We provide equations from which these characteristics can be calculated. The proposed methodology for generalized resonant shortcuts exploits the advantages of composite pulses in the rescaled time, while the corresponding control $z$-field varies continuously and monotonically in the original time. Of course, as the total duration approaches the lower limit, the changes in the control signal become more abrupt. These results are not restricted only to quantum information processing applications, but is also expected to impact other areas, where adiabatic rapid passage is used.



قيم البحث

اقرأ أيضاً

283 - Ran Li , Frank Gaitan 2011
We show how a robust high-fidelity universal set of quantum gates can be implemented using a single form of non-adiabatic rapid passage whose parameters are optimized to maximize gate fidelity and reward gate robustness. Each gate in the universal se t is found to operate with a fidelity F in the range 0.99988 < F < 0.99999, and to require control parameters with no more than 14-bit (1 part in 10,000) precision. Such precision is within reach of commercially available arbitrary waveform generators, so that an experimental study of this approach to high-fidelity universal quantum control appears feasible.
We show that with adiabatic passage, one can reliably drive two-photon optical transitions between the ground states and interacting Rydberg states in a pair of atoms. For finite Rydberg interaction strengths a new adiabatic pathway towards the doubl y Rydberg excited state is identified when a constant detuning is applied with respect to an intermediate optically excited level. The Rydberg interaction among the excited atoms provides a phase that may be used to implement quantum gate operations on atomic ground state qubits.
72 - S. L. Wu , X. L. Huang , H. Li 2017
The adiabatic theorem and shortcuts to adiabaticity for the adiabatic dynamics of time-dependent decoherence-free subspaces are explored in this paper. Starting from the definition of the dynamical stable decoherence-free subspaces, we show that, und er a compact adiabatic condition, the quantum state follows time-dependent decoherence-free subspaces (the adiabatic decoherence free subspaces) into the target subspace with extremely high purity, even though the dynamics of the quantum system may be non-adiabatic. The adiabatic condition mentioned in the adiabatic theorem is very similar with the adiabatic condition for closed quantum systems, except that the operators required to be slowness is on the Lindblad operators. We also show that the adiabatic decoherence-free subspaces program depends on the existence of instantaneous decoherence-free subspaces, which requires that the Hamiltonian of open quantum systems has to be engineered according to the incoherent control program. Besides, the shortcuts to adiabaticity for the adiabatic decoherence-free subspaces program is also presented based on the transitionless quantum driving method. Finally, we provide an example of physical systems that support our programs. Our approach employs Markovian master equations and applies primarily to finite-dimensional quantum systems.
Adiabatic transport of information is a widely invoked resource in connection with quantum information processing and distribution. The study of adiabatic transport via spin-half chains or clusters is standard in the literature, while in practice the true realisation of a completely isolated two-level quantum system is not achievable. We explore here, theoretically, the extension of spin-half chain models to higher spins. Considering arrangements of three spin-one particles, we show that adiabatic transport, specifically a generalisation of the Dark State Adiabatic Passage procedure, is applicable to spin-one systems. We thus demonstrate a qutrit state transfer protocol. We discuss possible ways to physically implement this protocol, considering quantum dot and nitrogen-vacancy implementations.
In this paperwe propose two theoretical schemes for implementation of quantum phase gates by engineering the phase-sensitive dark state of two atoms subjected to Rydberg-Rydberg interaction. Combining the conventional adiabatic techniques and current ly developed approaches of phase control, a feasible proposal for implementation of a geometric phase gate is presented, where the conditional phase shift (Berry phase) is achieved by adiabatically and cyclically changing the parameters of the driving fields. Here we find that the geometric phase acquired is related to the way how the relative phase is modulated. In the second scheme, the system Hamiltonian is adiabatically changed in a noncyclic manner, so that the acquired conditional phase is not a Berry phase. A detailed analysis of the experimental feasibility and the effect of decoherence is also given. The proposed schemes provide new perspectives for adiabatic manipulation of interacting Rydberg systems with tailored phase modulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا