ﻻ يوجد ملخص باللغة العربية
We study a class of elliptic SPDEs with additive Gaussian noise on $mathbb{R}^2 times M$, with $M$ a $d$-dimensional manifold equipped with a positive Radon measure, and a real-valued non linearity given by the derivative of a smooth potential $V$, convex at infinity and growing at most exponentially. For quite general coefficients and a suitable regularity of the noise we obtain, via the dimensional reduction principle discussed in our previous paper on the topic, the identity between the law of the solution to the SPDE evaluated at the origin with a Gibbs type measure on the abstract Wiener space $L^2 (M)$. The results are then applied to the elliptic stochastic quantization equation for the scalar field with polynomial interaction over $mathbb{T}^2$, and with exponential interaction over $mathbb{R}^2$ (known also as H{o}eg-Krohn or Liouville model in the literature). In particular for the exponential interaction case, the existence and uniqueness properties of solutions to the elliptic equation over $mathbb{R}^{2 + 2}$ is derived as well as the dimensional reduction for the values of the ``charge parameter $sigma = frac{alpha}{2sqrt{pi}} < sqrt{4 left( 8 - 4 sqrt{3} right) pi} simeq sqrt{4.23pi}$, for which the model has an Euclidean invariant probability measure (hence also permitting to get the corresponding relativistic invariant model on the two dimensional Minkowski space).
We introduce a stochastic analysis of Grassmann random variables suitable for the stochastic quantization of Euclidean fermionic quantum field theories. Analysis on Grassmann algebras is developed here from the point of view of quantum probability: a
The (elliptic) stochastic quantization equation for the (massive) $cosh(beta varphi)_2$ model, for the charged parameter in the $L^2$ regime (i.e. $beta^2 < 4 pi$), is studied. We prove the existence, uniqueness and the properties of the invariant me
We consider space-time quantum fields with exponential/trigonometric interactions. In the context of Euclidean quantum field theory, the former and the latter are called the Hoegh-Krohn model and the Sine-Gordon model, respectively. The main objectiv
(Due to the limit on the number of characters for an abstract set by arXiv, the full abstract can not be displayed here. See the abstract in the paper.) We study the construction of the $Phi^3_3$-measure and complete the program on the (non-)construc
Lattice spin models in statistical physics are used to understand magnetism. Their Hamiltonians are a discrete form of a version of a Dirichlet energy, signifying a relationship to the Harmonic map heat flow equation. The Gibbs distribution, defined