ﻻ يوجد ملخص باللغة العربية
Diamond photonics is an ever growing field of research driven by the prospects of harnessing diamond and its colour centres as suitable hardware for solid-state quantum applications. The last two decades have seen the field been shaped by the nitrogen-vacancy (NV) centre both with breakthrough fundamental physics demonstrations and practical realizations. Recently however, an entire suite of other diamond defects has emerged. They are M V colour centres, where M indicates one of the elements in the IV column of the periodic table Si, Ge, Sn and Pb, and V indicates lattice vacancies, i.e. missing next-neighbour carbon atoms. These centres exhibit a much stronger emission into the zero phonon line then the NV centre, they display inversion symmetry, and can be engineered using ion implantation all attractive features for scalable quantum photonic architectures based on solid-state, single-photon sources. In this perspective, we highlight the leading techniques for engineering and characterizing these diamond defects, discuss the current state-of-the-art of group IV-based devices and provide an outlook of the future directions the field is taking towards the realisation of solid-state quantum photonics with diamond.
The field of 2D materials-based nanophotonics has been growing at a rapid pace, triggered by the ability to design nanophotonic systems with in situ control, unprecedented degrees of freedom, and to build material heterostructures from bottom up with
In this chapter, we present the state-of-the-art in the generation of nonclassical states of light using semiconductor cavity quantum electrodynamics (QED) platforms. Our focus is on the photon blockade effects that enable the generation of indisting
Two-dimensional transition metal dichalcogenides (TMDCs) have recently become attractive semiconductor materials for several optoelectronic applications, such as photodetection, light harvesting, phototransistors, light-emitting diodes, and lasers. T
Group-IV color centers in diamond have attracted significant attention as solid-state spin qubits because of their excellent optical and spin properties. Among these color centers, the tin-vacancy (SnV$^{,textrm{-}}$) center is of particular interest
Atomic-size spin defects in solids are unique quantum systems. Most applications require nanometer positioning accuracy, which is typically achieved by low energy ion implantation. So far, a drawback of this technique is the significant residual impl