ترغب بنشر مسار تعليمي؟ اضغط هنا

Level inversion in kaonic nuclei and the high-density nuclear equation of state

105   0   0.0 ( 0 )
 نشر من قبل Rongyao Yang
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is very difficult for any nuclear model to pin down the saturation property and high-density equation of state (EOS) simultaneously because of high nonlinearity of the nuclear many-body problem. In this work, we propose, for the first time, to use the special property of light kaonic nuclei to characterize the relation between saturation property and high-density EOS. With a series of relativistic mean-field models, this special property is found to be the level inversion between orbitals $2S_{1/2}$ and $1D_{5/2}$ in light kaonic nuclei. This level inversion can serve as a theoretical laboratory to group the incompressibility at saturation density and the EOS at supra-normal densities simultaneously.

قيم البحث

اقرأ أيضاً

Born in the aftermath of core collapse supernovae, neutron stars contain matter under extraordinary conditions of density and temperature that are difficult to reproduce in the laboratory. In recent years, neutron star observations have begun to yiel d novel insights into the nature of strongly interacting matter in the high-density regime where current theoretical models are challenged. At the same time, chiral effective field theory has developed into a powerful framework to study nuclear matter properties with quantified uncertainties in the moderate-density regime for modeling neutron stars. In this article, we review recent developments in chiral effective field theory and focus on many-body perturbation theory as a computationally efficient tool for calculating the properties of hot and dense nuclear matter. We also demonstrate how effective field theory enables statistically meaningful comparisons between nuclear theory predictions, nuclear experiments, and observational constraints on the nuclear equation of state.
153 - M. Baldo , C. Maieron 2007
A central issue in the theory of astrophysical compact objects and heavy ion reactions at intermediate and relativistic energies is the Nuclear Equation of State (EoS). On one hand, the large and expanding set of experimental and observational data i s expected to constrain the behaviour of the nuclear EoS, especially at density above saturation, where it is directly linked to fundamental processes which can occur in dense matter. On the other hand, theoretical predictions for the EoS at high density can be challenged by the phenomenological findings. In this topical review paper we present the many-body theory of nuclear matter as developed along different years and with different methods. Only nucleonic degrees of freedom are considered. We compare the different methods at formal level, as well as the final EoS calculated within each one of the considered many-body schemes. The outcome of this analysis should help in restricting the uncertainty of the theoretical predictions for the nuclear EoS.
A sensitive correlation between the ground-state properties of light kaonic nuclei and the symmetry energy at high densities is constructed under the framework of relativistic mean-field theory. Taking oxygen isotopes as an example, we see that a hig h-density core is produced in kaonic oxygen nuclei, due to the strongly attractive antikaon-nucleon interaction. It is found that the $1S_{1/2}$ state energy in the high-density core of kaonic nuclei can directly probe the variation of the symmetry energy at supranormal nuclear density, and a sensitive correlation between the neutron skin thickness and the symmetry energy at supranormal density is established directly. Meanwhile, the sensitivity of the neutron skin thickness to the low-density slope of the symmetry energy is greatly increased in the corresponding kaonic nuclei. These sensitive relationships are established upon the fact that the isovector potential in the central region of kaonic nuclei becomes very sensitive to the variation of the symmetry energy. These findings might provide another perspective to constrain high-density symmetry energy, and await experimental verification in the future.
The response function approach is proposed to include vibrational state in calculation of level density. The calculations show rather strong dependence of level density on the relaxation times of collective state damping.
The effects of an additional $K^-$ meson on the neutron and proton drip lines are investigated within Skyrme-Hartree-Fock approach combined with a Skyrme-type kaon-nucleon interaction. While an extension of the proton drip line is observed due to the strongly attractive $K^-p$ interaction, contrasting effects (extension and reduction) on the neutron drip line of Be, O, and Ne isotopes are found. The origin of these differences is attributed to the behavior of the highest-occupied neutron single-particle levels near the neutron drip line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا