ترغب بنشر مسار تعليمي؟ اضغط هنا

The Rest-frame $H$-band Luminosity Function of Red Sequence Galaxies in Clusters at $1.0 < z < 1.3$

137   0   0.0 ( 0 )
 نشر من قبل Jeffrey Chi Chung Chan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results on the rest-frame $H$-band luminosity functions (LF) of red sequence galaxies in seven clusters at 1.0 < z < 1.3 from the Gemini Observations of Galaxies in Rich Early Environments Survey (GOGREEN). Using deep GMOS-z and IRAC $3.6 mu$m imaging, we identify red sequence galaxies and measure their LFs down to $M_{H} sim M_{H}^{*} + (2.0 - 3.0)$. By stacking the entire sample, we derive a shallow faint end slope of $ alpha sim -0.35^{+0.15}_{-0.15} $ and $ M_{H}^{*} sim -23.52^{+0.15}_{-0.17} $, suggesting that there is a deficit of faint red sequence galaxies in clusters at high redshift. By comparing the stacked red sequence LF of our sample with a sample of clusters at z~0.6, we find an evolution in the faint end of the red sequence over the ~2.6 Gyr between the two samples, with the mean faint end red sequence luminosity growing by more than a factor of two. The faint-to-luminous ratio of our sample ($0.78^{+0.19}_{-0.15}$) is consistent with the trend of decreasing ratio with increasing redshift as proposed in previous studies. A comparison with the field shows that the faint-to-luminous ratios in clusters are consistent with the field at z~1.15 and exhibit a stronger redshift dependence. Our results support the picture that the build up of the faint red sequence galaxies occurs gradually over time and suggest that faint cluster galaxies, similar to bright cluster galaxies, experience the quenching effect induced by environment already at z~1.15.



قيم البحث

اقرأ أيضاً

We derive the rest-frame $K$-band luminosity function for galaxies in 32 clusters at $0.6 < z < 1.3$ using deep $3.6mu$m and $4.5mu$m imaging from the Spitzer Space Telescope InfraRed Array Camera (IRAC). The luminosity functions approximate the stel lar mass function of the cluster galaxies. Their dependence on redshift indicates that massive cluster galaxies (to the characteristic luminosity $M^*_K$) are fully assembled at least at $z sim 1.3$ and that little significant accretion takes place at later times. The existence of massive, highly evolved galaxies at these epochs is likely to represent a significant challenge to theories of hierarchical structure formation where such objects are formed by the late accretion of spheroidal systems at $z < 1$.
We present the rest-frame J- and H-band luminosity function (LF) of field galaxies, based on a deep multi-wavelength composite sample from the MUSYC, FIRES and FIREWORKS survey public catalogues, covering a total area of 450 arcmin^2. The availabilit y of flux measurements in the Spitzer IRAC 3.6, 4.5, 5.8, and 8 um channels allows us to compute absolute magnitudes in the rest-frame J and H bands up to z=3.5 minimizing the dependence on the stellar evolution models. We compute the LF in the four redshift bins 1.5<z<2.0, 2.0<z<2.5, 2.5<z<3.0 and 3.0<z<3.5. Combining our results with those already available at lower redshifts, we find that (1) the faint end slope is consistent with being constant up to z=3.5, with alpha=-1.05+/-0.03 for the rest-frame J band and alpha=-1.15+/-0.02 for the rest-frame H band; (2) the normalization phi* decreases by a factor of 6 between z=0 and z~1.75 and by a factor 3 between z~1.75 and z=3.25; (3) the characteristic magnitude M* shows a brightening from z=0 to z~2 followed by a slow dimming to z=3.25. We finally compute the luminosity density (LD) in both rest-frame J and H bands. The analysis of our results together with those available in the literature shows that the LD is approximately constant up to z~1, and it then decreases by a factor of 6 up to z=3.5.
194 - David G. Gilbank 2007
We use a statistical sample of ~500 rich clusters taken from 72 square degrees of the Red-Sequence Cluster Survey (RCS-1) to study the evolution of ~30,000 red-sequence galaxies in clusters over the redshift range 0.35<z<0.95. We construct red-sequen ce luminosity functions (RSLFs) for a well-defined, homogeneously selected, richness limited sample. The RSLF at higher redshifts shows a deficit of faint red galaxies (to M_V=> -19.7) with their numbers increasing towards the present epoch. This is consistent with the `down-sizing` picture in which star-formation ended at earlier times for the most massive (luminous) galaxies and more recently for less massive (fainter) galaxies. We observe a richness dependence to the down-sizing effect in the sense that, at a given redshift, the drop-off of faint red galaxies is greater for poorer (less massive) clusters, suggesting that star-formation ended earlier for galaxies in more massive clusters. The decrease in faint red-sequence galaxies is accompanied by an increase in faint blue galaxies, implying that the process responsible for this evolution of faint galaxies is the termination of star-formation, possibly with little or no need for merging. At the bright end, we also see an increase in the number of blue galaxies with increasing redshift, suggesting that termination of star-formation in higher mass galaxies may also be an important formation mechanism for higher mass ellipticals. By comparing with a low-redshift Abell Cluster sample, we find that the down-sizing trend seen within RCS-1 has continued to the local universe.
We present the rest-frame optical (B, V, and R band) luminosity functions (LFs) of galaxies at 2<z<3.5, measured from a K-selected sample constructed from the deep NIR MUSYC, the ultradeep FIRES, and the GOODS-CDFS. This sample is unique for its comb ination of area and range of luminosities. The faint-end slopes of the LFs at z>2 are consistent with those at z~0. The characteristic magnitudes are significantly brighter than the local values (e.g., ~1.2 mag in the R band), while the measured values for Phi_star are typically ~5 times smaller. The B-band luminosity density at z~2.3 is similar to the local value, and in the R band it is ~2 times smaller than the local value. We present the LF of Distant Red Galaxies (DRGs), which we compare to that of non-DRGs. While DRGs and non-DRGs are characterized by similar LFs at the bright end, the faint-end slope of the non-DRG LF is much steeper than that of DRGs. The contribution of DRGs to the global densities down to the faintest probed luminosities is 14%-25% in number and 22%-33% in luminosity. From the derived rest-frame U-V colors and stellar population synthesis models, we estimate the mass-to-light ratios (M/L) of the different subsamples. The M/L ratios of DRGs are ~5 times higher (in the R and V bands) than those of non-DRGs. The global stellar mass density at 2<z<3.5 appears to be dominated by DRGs, whose contribution is of order ~60%-80% of the global value. Qualitatively similar results are obtained when the population is split by rest-frame U-V color instead of observed J-K color.
We study the slope, intercept, and scatter of the color-magnitude and color-mass relations for a sample of ten infrared red-sequence-selected clusters at z ~ 1. The quiescent galaxies in these clusters formed the bulk of their stars above z ~ 3 with an age spread {Delta}t ~ 1 Gyr. We compare UVJ color-color and spectroscopic-based galaxy selection techniques, and find a 15% difference in the galaxy populations classified as quiescent by these methods. We compare the color-magnitude relations from our red-sequence selected sample with X-ray- and photometric- redshift-selected cluster samples of similar mass and redshift. Within uncertainties, we are unable to detect any difference in the ages and star formation histories of quiescent cluster members in clusters selected by different methods, suggesting that the dominant quenching mechanism is insensitive to cluster baryon partitioning at z ~ 1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا