ﻻ يوجد ملخص باللغة العربية
It is well established that the $SU(P)_L$ gauge symmetry for $Pgeq 3$ can address the question of fermion generation number due to the anomaly cancellation, but it neither commutes nor closes algebraically with electric and baryon-minus-lepton charges. Hence, two $U(1)$ factors that determine such charges are required, yielding a complete gauge symmetry, $SU(P)_Lotimes U(1)_Xotimes U(1)_N$, apart from the color group. The resulting theory manifestly provides neutrino mass, dark matter, inflation, and baryon asymmetry of the universe. Furthermore, this gauge structure may present kinetic mixing effects associated to the $U(1)$ gauge fields, which affect the electroweak precision test such as the $rho$ parameter and $Z$ couplings as well as the new physics processes. We will construct the model, examine the interplay between the kinetic mixing and those due to the symmetry breaking, and obtain the physical results in detail.
It is shown that for a higher weak isospin symmetry, $SU(P)_L$ with $Pgeq 3$, the baryon minus lepton charge $B-L$ neither commutes nor closes algebraically with $SU(P)_L$ similar to the electric charge $Q$, which all lead to a $SU(3)_Cotimes SU(P)_L
We present formulae for the calculation of Dirac gaugino masses at leading order in the supersymmetry breaking scale using the methods of analytic continuation in superspace and demonstrate a link with kinetic mixing, even for non-abelian gauginos. W
A general procedure to describe the coupling $U_A (1) times U_B (1)$ between antisymmetric gauge fields is proposed. For vector gauge theories the inclusion of magnetic mixing in the hidden sector induces millicharges -- in principle -- observable. W
Gauge-Higgs unification is the fascinating scenario solving the hierarchy problem without supersymmetry. In this scenario, the Standard Model (SM) Higgs doublet is identified with extra component of the gauge field in higher dimensions and its mass b
In the absence of gauge fields, quantum field theories on the Groenewold-Moyal (GM) plane are invariant under a twisted action of the Poincare group if they are formulated following [1, 2, 3, 4, 5, 6]. In that formulation, such theories also have no