ﻻ يوجد ملخص باللغة العربية
In transition metal dichalcogenides, defects have been found to play an important role, affecting doping, spin-valley relaxation dynamics, and assisting in proximity effects of spin-orbit coupling. Here, we study localized states in $mathrm{WS}_2$ and how they affect tunneling through van der Waals heterostructures of h-BN/graphene/$mathrm{WS}_2$/metal. The obtained conductance maps as a function of bias and gate voltage reveal single-electron transistor behavior (Coulomb blockade) with a rich set of transport features including excited states and negative differential resistance regimes. Applying a perpendicular magnetic field, we observe a shift in the energies of the quantum levels and information about the orbital magnetic moment of the localized states is extracted.
We develop a theory for interlayer tunneling in van der Waals heterostructures driven under a strong electromagnetic field, using graphene/{it h}-BN/graphene as a paradigmatic example. Our theory predicts that strong anti-resonances appear at bias vo
Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here we report novel multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures
In van der Waals heterostructures, electronic bands of two-dimensional (2D) materials, their nontrivial topology, and electron-electron interactions can be dramatically changed by a moire pattern induced by twist angles between different layers. Such
Recent works have revealed that van der Waals (vdW) epitaxial growth of 2D materials on crystalline substrates, such as hexagonal boron nitride (hBN), leads to formation of self-aligned grains, which results in defect-free stitching between the grain
In van der Waals (vdW) heterostructures formed by stacking two monolayer semiconductors, lattice mismatch or rotational misalignment introduces an in-plane moire superlattice. While it is widely recognized that a moire superlattice can modulate the e