ﻻ يوجد ملخص باللغة العربية
We prove existence and uniqueness of strong (pointwise) solutions to a linear nonlocal strongly coupled hyperbolic system of equations posed on all of Euclidean space. The system of equations comes from a linearization of a nonlocal model of elasticity in solid mechanics. It is a nonlocal analogue of the Navier-Lame system of classical elasticity. We use a well-known semigroup technique that hinges on the strong solvability of the corresponding steady-state elliptic system. The leading operator is an integro-differential operator characterized by a distinctive matrix kernel which is used to couple differences of components of a vector field. For an operator possessing an asymmetric kernel comparable to that of the fractional Laplacian, we prove the $L^2$-solvability of the elliptic system in a Bessel potential space using the Fourier transform and textit{a priori} estimates. This $L^2$-solvability together with the Hille-Yosida theorem is used to prove the well posedness of the wave-type time dependent problem. For the fractional Laplacian kernel we extend the solvability to $L^p$ spaces using classical multiplier theorems.
In this paper we study the asymptotic behavior of solutions to systems of strongly coupled integral equations with oscillatory coefficients. The system of equations is motivated by a peridynamic model of the deformation of heterogeneous media that ad
We prove global-in-time existence and uniqueness of measure solutions of a nonlocal interaction system of two species in one spatial dimension. For initial data including atomic parts we provide a notion of gradient-flow solutions in terms of the pse
This paper concerns inverse problems for strongly coupled Schrodinger equations. The purpose of this inverse problem is to retrieve a stationary potential in the strongly coupled Schrodinger equations from either boundary or internal measurements. Tw
We define the Ladyzhenskaya-Lions exponent $alpha_{rm {tiny sc l}} (n)=({2+n})/4$ for Navier-Stokes equations with dissipation $-(-Delta)^{alpha}$ in ${Bbb R}^n$, for all $ngeq 2$. We review the proof of strong global solvability when $alphageq alp
We introduce matrix coupled (local and nonlocal) dispersionless equations, construct wide classes of explicit multipole solutions, give explicit expressions for the corresponding Darboux and wave matrix valued functions and consider their asymptotics