ﻻ يوجد ملخص باللغة العربية
For any $n$-dimensional 3-Lie algebra $A$ over a field of characteristic zero with an involutive derivation $D$, we investigate the structure of the 3-Lie algebra $B_1=Altimes_{ad^*} A^* $ associated with the coadjoint representation $(A^*, ad^*)$. We then discuss the structure of the dual 3-Lie algebra $B_2$ of the local cocycle 3-Lie bialgebra $(Altimes_{ad^*} A^*, Delta)$. By means of the involutive derivation $D$, we construct the $4n$-dimensional Manin triple $(B_1oplus B_2,$ $ [ cdot, cdot, cdot]_1,$ $ [ cdot, cdot, cdot]_2,$ $ B_1, B_2)$ of 3-Lie algebras, and provide concrete multiplication in a special basis $Pi_1cupPi_2$. We also construct a sixteen dimensional Manin triple $(B, [ cdot, cdot, cdot])$ with $dim B^1=12$ using an involutive derivation on a four dimensional 3-Lie algebra $A$ with $dim A^1=2$.
In this paper, we study the structure of 3-Lie algebras with involutive derivations. We prove that if $A$ is an $m$-dimensional 3-Lie algebra with an involutive derivation $D$, then there exists a compatible 3-pre-Lie algebra $(A, { , , , }_D)$ such
We initiate a study on a range of new generalized derivations of finite-dimensional Lie algebras over an algebraically closed field of characteristic zero. This new generalization of derivations has an analogue in the theory of associative prime ring
In this paper, we define a class of 3-algebras which are called 3-Lie-Rinehart algebras. A 3-Lie-Rinehart algebra is a triple $(L, A, rho)$, where $A$ is a commutative associative algebra, $L$ is an $A$-module, $(A, rho)$ is a 3-Lie algebra $L$-modul
In this paper, first we introduce the notion of a twilled 3-Lie algebra, and construct an $L_infty$-algebra, whose Maurer-Cartan elements give rise to new twilled 3-Lie algebras by twisting. In particular, we recover the Lie $3$-algebra whose Maurer-
In this paper, first we introduce the notion of a twisted Rota-Baxter operator on a 3-Lie algebra $g$ with a representation on $V$. We show that a twisted Rota-Baxter operator induces a 3-Lie algebra structure on $V$, which represents on $g$. By this