ﻻ يوجد ملخص باللغة العربية
We have observed the Class I protostellar source Elias 29 with Atacama Large Millimeter/submillimeter Array (ALMA). We have detected CS, SO, $^{34}$SO, SO$_2$, and SiO line emissions in a compact component concentrated near the protostar and a ridge component separated from the protostar by 4arcsec ($sim 500$ au). The former component is found to be abundant in SO and SO$_2$ but deficient in CS. The abundance ratio SO/CS is as high as $3^{+13}_{-2} times 10^2$ at the protostar, which is even higher than that in the outflow-shocked region of L1157 B1. However, organic molecules (HCOOCH$_3$, CH$_3$OCH$_3$, CCH, and c-C$_3$H$_2$) are deficient in Elias 29. We attribute the deficiency in organic molecules and richness in SO and SO$_2$ to the evolved nature of the source or the relatively high dust temperature (protectraisebox{-0.7ex}{$:stackrel{textstyle >}{sim}:$} 20 K) in the parent cloud of Elias 29. The SO and SO$_2$ emissions trace rotation around the protostar. Assuming a highly inclined configuration ($i geq 65$degr; 0degr for a face-on configuration) and Keplerian motion for simplicity, the protostellar mass is estimated to be (0.8 -- 1.0) Msun. The $^{34}$SO and SO$_2$ emissions are asymmetric in their spectra; the blue-shifted components are weaker than the red-shifted ones. Although this may be attributed to the asymmetric molecular distribution, other possibilities are also discussed.
We present an observational study of the sulfur (S)-bearing species towards Orion KL at 1.3 mm by combining ALMA and IRAM-30,m single-dish data. At a linear resolution of $sim$800 au and a velocity resolution of 1 $mathrm{km, s^{-1}, }$, we have iden
[Abridged] We investigated the X-ray characteristics of the Class I YSO Elias 29 with joint XMM-Newton and NuSTAR observations of 300 ks and 450 ks, respectively. These are the first observations of a very young (<1 Myr) stellar object in a band enco
We present the results of observations toward a low-mass Class-0/I protostar, [BHB2007]#11 (afterwards B59#11) at the nearby (d=130 pc) star forming region, Barnard 59 (B59) in the Pipe Nebula with the Atacama Submillimeter Telescope Experiment (ASTE
We have observed the Class 0 protostellar source IRAS 16293-2422 A in the C17O and H2CS lines as well as the 1.3 mm dust continuum with the Atacama Large Millimeter/submillimeter Array at an angular resolution of ~0.1 (14 au). The continuum emission
A massive envelope and a strong bipolar outflow are the two main structures characterizing the youngest protostellar systems. In order to understand the physical properties of a bipolar outflow and the relationship with those of the envelope, we obta